Hart Emily J, Powers-Lee Susan G
Department of Biology, Northeastern University, Boston, Massachusetts 02115-5000, USA.
Protein Sci. 2008 Jul;17(7):1120-8. doi: 10.1110/ps.073428008. Epub 2008 May 5.
Evolutionarily conserved triad glutamine amidotransferase (GAT) domains catalyze the cleavage of glutamine to yield ammonia and sequester the ammonia in a tunnel until delivery to a variety of acceptor substrates in synthetase domains of variable structure. Whereas a conserved hydrolytic triad (Cys/His/Glu) is observed in the solved GAT structures, the specificity pocket for glutamine is not apparent, presumably because its formation is dependent on the conformational change that couples acceptor availability to a greatly increased rate of glutamine cleavage. In Escherichia coli carbamoyl phosphate synthetase (eCPS), one of the best characterized triad GAT members, the Cys269 and His353 triad residues are essential for glutamine hydrolysis, whereas Glu355 is not critical for eCPS activity. To further define the glutamine-binding pocket and possibly identify an alternative member of the catalytic triad that is situated for this role in the coupled conformation, we have analyzed mutations at Gln310, Asn311, Asp334, and Gln351, four conserved, but not yet analyzed residues that might potentially function as the third triad member. Alanine substitution of Gln351, Asn311, and Gln310 yielded respective K(m) increases of 145, 27, and 15, suggesting that Gln351 plays a key role in glutamine binding in the coupled conformation, and that Asn311 and Gln310 make less significant contributions. None of the mutant k (cat) values varied significantly from those for wild-type eCPS. Combined with previously reported data on other conserved eCPS residues, these results strongly suggest that Cys269 and His353 function as a catalytic dyad in the GAT site of eCPS.
进化上保守的三联体谷氨酰胺酰胺转移酶(GAT)结构域催化谷氨酰胺的裂解以产生氨,并将氨隔离在一个通道中,直到将其传递给结构可变的合成酶结构域中的各种受体底物。虽然在已解析的GAT结构中观察到一个保守的水解三联体(半胱氨酸/组氨酸/谷氨酸),但谷氨酰胺的特异性口袋并不明显,大概是因为其形成依赖于构象变化,这种变化将受体的可用性与谷氨酰胺裂解速率的大幅提高联系起来。在大肠杆菌氨甲酰磷酸合成酶(eCPS)中,这是特征最明确的三联体GAT成员之一,半胱氨酸269和组氨酸353三联体残基对于谷氨酰胺水解至关重要,而谷氨酸355对eCPS活性并不关键。为了进一步确定谷氨酰胺结合口袋,并可能识别在偶联构象中担任此角色的催化三联体的替代成员,我们分析了谷氨酰胺310、天冬酰胺311、天冬氨酸334和谷氨酰胺351处的突变,这四个保守但尚未分析的残基可能潜在地作为第三个三联体成员发挥作用。将谷氨酰胺351、天冬酰胺311和谷氨酰胺310替换为丙氨酸分别导致K(m)增加了145、27和15,这表明谷氨酰胺351在偶联构象中谷氨酰胺结合中起关键作用,而天冬酰胺311和谷氨酰胺310的贡献较小。没有一个突变体的k(cat)值与野生型eCPS的值有显著差异。结合先前报道的关于其他保守的eCPS残基的数据,这些结果强烈表明半胱氨酸269和组氨酸353在eCPS的GAT位点中作为催化二元体发挥作用。