Mori Giorgia, Chiarelli Laurent R, Esposito Marta, Makarov Vadim, Bellinzoni Marco, Hartkoorn Ruben C, Degiacomi Giulia, Boldrin Francesca, Ekins Sean, de Jesus Lopes Ribeiro Ana Luisa, Marino Leonardo B, Centárová Ivana, Svetlíková Zuzana, Blaško Jaroslav, Kazakova Elena, Lepioshkin Alexander, Barilone Nathalie, Zanoni Giuseppe, Porta Alessio, Fondi Marco, Fani Renato, Baulard Alain R, Mikušová Katarína, Alzari Pedro M, Manganelli Riccardo, de Carvalho Luiz Pedro S, Riccardi Giovanna, Cole Stewart T, Pasca Maria Rosalia
Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100 Pavia, Italy.
A. N. Bakh Institute of Biochemistry, Russian Academy of Science, 119071 Moscow, Russia.
Chem Biol. 2015 Jul 23;22(7):917-27. doi: 10.1016/j.chembiol.2015.05.016. Epub 2015 Jun 18.
To combat the emergence of drug-resistant strains of Mycobacterium tuberculosis, new antitubercular agents and novel drug targets are needed. Phenotypic screening of a library of 594 hit compounds uncovered two leads that were active against M. tuberculosis in its replicating, non-replicating, and intracellular states: compounds 7947882 (5-methyl-N-(4-nitrophenyl)thiophene-2-carboxamide) and 7904688 (3-phenyl-N-[(4-piperidin-1-ylphenyl)carbamothioyl]propanamide). Mutants resistant to both compounds harbored mutations in ethA (rv3854c), the gene encoding the monooxygenase EthA, and/or in pyrG (rv1699) coding for the CTP synthetase, PyrG. Biochemical investigations demonstrated that EthA is responsible for the activation of the compounds, and by mass spectrometry we identified the active metabolite of 7947882, which directly inhibits PyrG activity. Metabolomic studies revealed that pharmacological inhibition of PyrG strongly perturbs DNA and RNA biosynthesis, and other metabolic processes requiring nucleotides. Finally, the crystal structure of PyrG was solved, paving the way for rational drug design with this newly validated drug target.
为了对抗结核分枝杆菌耐药菌株的出现,需要新的抗结核药物和新的药物靶点。对一个包含594种活性化合物的文库进行表型筛选,发现了两种在结核分枝杆菌的复制、非复制和细胞内状态下均具有活性的先导化合物:化合物7947882(5-甲基-N-(4-硝基苯基)噻吩-2-甲酰胺)和7904688(3-苯基-N-[(4-哌啶-1-基苯基)氨基甲硫酰基]丙酰胺)。对这两种化合物均耐药的突变体在编码单加氧酶EthA的基因ethA(rv3854c)和/或编码CTP合成酶PyrG的pyrG(rv1699)中发生了突变。生化研究表明,EthA负责化合物的激活,通过质谱我们鉴定出了7947882的活性代谢产物,它直接抑制PyrG的活性。代谢组学研究表明,对PyrG的药理抑制强烈干扰DNA和RNA的生物合成以及其他需要核苷酸的代谢过程。最后,解析了PyrG的晶体结构,为利用这个新验证的药物靶点进行合理药物设计铺平了道路。