Endrizzi James A, Kim Hanseong, Anderson Paul M, Baldwin Enoch P
Department of Molecular and Cellular Biology, University of California, Davis, 1 Shields Avenue, Davis, California 95616, USA.
Biochemistry. 2004 Jun 1;43(21):6447-63. doi: 10.1021/bi0496945.
Cytidine triphosphate synthetases (CTPSs) produce CTP from UTP and glutamine, and regulate intracellular CTP levels through interactions with the four ribonucleotide triphosphates. We solved the 2.3-A resolution crystal structure of Escherichia coli CTPS using Hg-MAD phasing. The structure reveals a nearly symmetric 222 tetramer, in which each bifunctional monomer contains a dethiobiotin synthetase-like amidoligase N-terminal domain and a Type 1 glutamine amidotransferase C-terminal domain. For each amidoligase active site, essential ATP- and UTP-binding surfaces are contributed by three monomers, suggesting that activity requires tetramer formation, and that a nucleotide-dependent dimer-tetramer equilibrium contributes to the observed positive cooperativity. A gated channel that spans 25 A between the glutamine hydrolysis and amidoligase active sites provides a path for ammonia diffusion. The channel is accessible to solvent at the base of a cleft adjoining the glutamine hydrolysis active site, providing an entry point for exogenous ammonia. Guanine nucleotide binding sites of structurally related GTPases superimpose on this cleft, providing insights into allosteric regulation by GTP. Mutations that confer nucleoside drug resistance and release CTP inhibition map to a pocket that neighbors the UTP-binding site and can accommodate a pyrimidine ring. Its location suggests that competitive feedback inhibition is affected via a distinct product/drug binding site that overlaps the substrate triphosphate binding site. Overall, the E. coli structure provides a framework for homology modeling of other CTPSs and structure-based design of anti-CTPS therapeutics.
胞苷三磷酸合成酶(CTPSs)利用尿苷三磷酸(UTP)和谷氨酰胺生成胞苷三磷酸(CTP),并通过与四种核糖核苷酸三磷酸相互作用来调节细胞内CTP水平。我们使用汞原子反常散射(Hg-MAD)相位法解析了大肠杆菌CTPS的2.3埃分辨率晶体结构。该结构揭示了一个近乎对称的222四聚体,其中每个双功能单体包含一个脱硫生物素合成酶样酰胺连接酶N端结构域和一个1型谷氨酰胺氨基转移酶C端结构域。对于每个酰胺连接酶活性位点,必需的ATP和UTP结合表面由三个单体提供,这表明活性需要四聚体形成,并且核苷酸依赖性二聚体-四聚体平衡导致了观察到的正协同性。一个横跨谷氨酰胺水解和酰胺连接酶活性位点之间25埃的门控通道为氨扩散提供了一条路径。该通道在与谷氨酰胺水解活性位点相邻的裂缝底部可被溶剂接触,为外源氨提供了一个入口点。结构相关的GTP酶的鸟嘌呤核苷酸结合位点叠加在这个裂缝上,为GTP的变构调节提供了见解。赋予核苷类药物抗性并解除CTP抑制的突变定位到一个与UTP结合位点相邻且能容纳嘧啶环的口袋。其位置表明竞争性反馈抑制是通过一个与底物三磷酸结合位点重叠的独特产物/药物结合位点来影响的。总体而言,大肠杆菌的结构为其他CTPS的同源建模和基于结构的抗CTPS治疗药物设计提供了一个框架。