Dhanikula Anand Babu, Panchagnula Ramesh
Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, S.A.S Nagar, 160062, India.
Lipids. 2008 Jun;43(6):569-79. doi: 10.1007/s11745-008-3178-1. Epub 2008 May 6.
To understand the bilayer interaction with paclitaxel, fluorescence polarization, Fourier transform infrared spectroscopy (FT-IR) and 31-phosphorus nuclear magnetic resonance (31P-NMR) studies were performed on paclitaxel bearing liposomes. Fluorescence anisotropy of three probes namely, 1,6-diphenyl-1,3,5-hexatriene (DPH), 12-(9-anthroyloxy) stearic acid (12AS) and 8-anilino-1-naphthalene sulfonate (ANS) were monitored as a function of paclitaxel concentration in the unsaturated bilayers. The incorporation of paclitaxel decreased anisotropy of 12AS and ANS probes, while slightly increased anisotropy of DPH. Paclitaxel has a fluidizing effect in the upper region of the bilayer whereas the hydrophobic core is slightly rigidized. FT-IR spectroscopy showed an increase in the asymmetric and symmetric methylene stretching frequencies, splitting of methylene scissoring band and broadening of carbonyl stretching mode. These studies collectively ascertained that paclitaxel mainly occupies the cooperativity region and interact with the interfacial region of unsaturated bilayers and induces fluidity in the headgroup region of bilayer. At higher loadings (>3 mol%), paclitaxel might gradually tend to accumulate at the interface and eventually partition out of bilayer as a result of solute exclusion phenomenon, resulting in crystallization; seed non-bilayer phases, as revealed by 31P-NMR, thereby destabilizing liposomal formulations. In general, any membrane component which has a rigidization effect will decrease, while that with a fluidizing effect will increase, with a bearing on headgroup interactions, partitioning of paclitaxel into bilayers and stability of the liposomes.
为了解双层膜与紫杉醇的相互作用,对负载紫杉醇的脂质体进行了荧光偏振、傅里叶变换红外光谱(FT-IR)和31-磷核磁共振(31P-NMR)研究。监测了三种探针(即1,6-二苯基-1,3,5-己三烯(DPH)、12-(9-蒽氧基)硬脂酸(12AS)和8-苯胺基-1-萘磺酸盐(ANS))的荧光各向异性,作为不饱和双层膜中紫杉醇浓度的函数。紫杉醇的掺入降低了12AS和ANS探针的各向异性,而略微增加了DPH的各向异性。紫杉醇在双层膜的上层区域具有流化作用,而疏水核心略有刚性化。FT-IR光谱显示不对称和对称亚甲基伸缩频率增加、亚甲基剪式振动带分裂以及羰基伸缩模式变宽。这些研究共同确定,紫杉醇主要占据协同区域并与不饱和双层膜的界面区域相互作用,并在双层膜的头基区域诱导流动性。在较高负载量(>3 mol%)下,由于溶质排斥现象,紫杉醇可能逐渐倾向于在界面处积累并最终从双层膜中析出,导致结晶;如31P-NMR所示,形成种子非双层相,从而使脂质体制剂不稳定。一般来说,任何具有刚性化作用的膜成分都会降低,而具有流化作用的膜成分会增加,这与头基相互作用、紫杉醇在双层膜中的分配以及脂质体的稳定性有关。