Suppr超能文献

大肠杆菌phn(psiD)基因簇参与以膦酸盐、亚磷酸盐、磷酸酯和磷酸盐形式存在的磷的同化作用。

Involvement of the Escherichia coli phn (psiD) gene cluster in assimilation of phosphorus in the form of phosphonates, phosphite, Pi esters, and Pi.

作者信息

Metcalf W W, Wanner B L

机构信息

Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907.

出版信息

J Bacteriol. 1991 Jan;173(2):587-600. doi: 10.1128/jb.173.2.587-600.1991.

Abstract

The phn (psiD) gene cluster is induced during Pi limitation and is required for the use of phosphonates (Pn) as a phosphorus (P) source. Twelve independent Pn-negative (Pn-) mutants have lesions in the phn gene cluster which, as determined on the basis of recombination frequencies, is larger than 10 kbp. This distance formed the basis for determining the complete DNA sequence of a 15.6-kbp BamHI fragment, the sequences of which suggested an operon with 17 open reading frames, denoted (in alphabetical order) the phnA to phnQ genes (C.-M. Chen, Q.-Z. Ye, Z. Zhu, B. L. Wanner, and C. T. Walsh, J. Biol. Chem. 265:4461-4471, 1990) Ten Pn- lesions lie in the phnD, phnE, phnH, phnJ, phnK, phnO, and phnP genes. We propose a smaller gene cluster with 14 open reading frames, phnC to phnP, which probably encode transporter and regulatory functions, in addition to proteins needed in Pn biodegradation. On the basis of the effects on phosphite (Pt), Pi ester, and Pi use, we propose that PhnC, PhnD, and PhnE constitute a binding protein-dependent Pn transporter which also transports Pt, Pi esters, and Pi. We propose that PhnO has a regulatory role because a phnO lesion affects no biochemical function, except for those due to polarity. Presumably, the 10 other phn gene products mostly act in an enzyme complex needed for breaking the stable carbon-phosphorus bond. Interestingly, all Pn- mutations abolish the use not only of Pn but also of Pt, in which P is in the +3 oxidation state. Therefore, Pn metabolism and Pt metabolism are related, supporting a biochemical mechanism for carbon-phosphorus bond cleavage which involves redox chemistry at the P center. Furthermore, our discovery of Pi-regulated genes for the assimilation of reduced P suggests that a P redox cycle may be important in biology.

摘要

phn(psiD)基因簇在磷限制期间被诱导,并且是利用膦酸盐(Pn)作为磷(P)源所必需的。十二个独立的Pn阴性(Pn-)突变体在phn基因簇中存在损伤,根据重组频率确定,该基因簇大于10 kbp。这个距离构成了确定一个15.6-kbp BamHI片段完整DNA序列的基础,其序列表明有一个含有17个开放阅读框的操纵子,按字母顺序表示为phnA至phnQ基因(C.-M. Chen、Q.-Z. Ye、Z. Zhu、B. L. Wanner和C. T. Walsh,《生物化学杂志》265:4461 - 4471,1990年)。十个Pn-损伤位于phnD、phnE、phnH、phnJ、phnK、phnO和phnP基因中。我们提出一个较小的基因簇,含有14个开放阅读框,即phnC至phnP,除了Pn生物降解所需的蛋白质外,可能还编码转运和调节功能。基于对亚磷酸盐(Pt)、磷酸酯和磷利用的影响,我们提出PhnC、PhnD和PhnE构成一个依赖结合蛋白的Pn转运体,它也转运Pt、磷酸酯和磷。我们提出PhnO具有调节作用,因为phnO损伤除了由于极性导致的那些影响外,不影响任何生化功能。据推测,其他10个phn基因产物大多在打破稳定碳 - 磷键所需的酶复合物中起作用。有趣的是,所有Pn-突变不仅消除了对Pn的利用,也消除了对Pt的利用,其中P处于+3氧化态。因此,Pn代谢和Pt代谢是相关的,支持了一种涉及P中心氧化还原化学的碳 - 磷键裂解的生化机制。此外,我们对还原态磷同化的磷调节基因的发现表明,磷氧化还原循环在生物学中可能很重要。

相似文献

2
3
Evidence for a fourteen-gene, phnC to phnP locus for phosphonate metabolism in Escherichia coli.
Gene. 1993 Jul 15;129(1):27-32. doi: 10.1016/0378-1119(93)90692-v.
4
Molecular genetic studies of a 10.9-kb operon in Escherichia coli for phosphonate uptake and biodegradation.
FEMS Microbiol Lett. 1992 Dec 15;100(1-3):133-9. doi: 10.1111/j.1574-6968.1992.tb14031.x.
6
Genes for phosphonate biodegradation in Escherichia coli.
SAAS Bull Biochem Biotechnol. 1992 Jan;5:1-6.
7
Mapping and molecular cloning of the phn (psiD) locus for phosphonate utilization in Escherichia coli.
J Bacteriol. 1990 Mar;172(3):1186-96. doi: 10.1128/jb.172.3.1186-1196.1990.
8
Evidence for two phosphonate degradative pathways in Enterobacter aerogenes.
J Bacteriol. 1992 Apr;174(8):2501-10. doi: 10.1128/jb.174.8.2501-2510.1992.
9
Molecular analysis of the cryptic and functional phn operons for phosphonate use in Escherichia coli K-12.
J Bacteriol. 1991 Apr;173(8):2665-72. doi: 10.1128/jb.173.8.2665-2672.1991.
10
Phosphate-independent expression of the carbon-phosphorus lyase activity of Escherichia coli.
Appl Microbiol Biotechnol. 1998 May;49(5):573-8. doi: 10.1007/s002530051215.

引用本文的文献

2
Unveiling the role of the PhoP master regulator in arsenite resistance through downregulation in .
Curr Res Microb Sci. 2025 Feb 5;8:100357. doi: 10.1016/j.crmicr.2025.100357. eCollection 2025.
3
Transcriptomic Insights into Archaeal Nitrification in the Amundsen Sea Polynya, Antarctica.
J Microbiol. 2023 Nov;61(11):967-980. doi: 10.1007/s12275-023-00090-0. Epub 2023 Dec 7.
4
AMP-dependent phosphite dehydrogenase, a phosphorylating enzyme in dissimilatory phosphite oxidation.
Proc Natl Acad Sci U S A. 2023 Nov 7;120(45):e2309743120. doi: 10.1073/pnas.2309743120. Epub 2023 Nov 3.
5
Taxonomic distribution of metabolic functions in bacteria associated with consortia.
mSystems. 2023 Dec 21;8(6):e0074223. doi: 10.1128/msystems.00742-23. Epub 2023 Nov 2.
7
On the potential roles of phosphorus in the early evolution of energy metabolism.
Front Microbiol. 2023 Aug 2;14:1239189. doi: 10.3389/fmicb.2023.1239189. eCollection 2023.
8
Structural remodelling of the carbon-phosphorus lyase machinery by a dual ABC ATPase.
Nat Commun. 2023 Feb 22;14(1):1001. doi: 10.1038/s41467-023-36604-y.
10
Global and gene-specific translational regulation in Escherichia coli across different conditions.
PLoS Comput Biol. 2022 Oct 20;18(10):e1010641. doi: 10.1371/journal.pcbi.1010641. eCollection 2022 Oct.

本文引用的文献

1
Microbial oxidation and utilization of orthophosphite during growth.
J Bacteriol. 1960 Aug;80(2):237-41. doi: 10.1128/jb.80.2.237-241.1960.
2
Phosphate-controlled gene expression in Escherichia coli K12 using Mudl-directed lacZ fusions.
J Mol Biol. 1982 Jul 5;158(3):347-63. doi: 10.1016/0022-2836(82)90202-9.
3
On the redox control of synthesis of anaerobically induced enzymes in enterobacteriaceae.
Arch Microbiol. 1983 Nov;136(2):131-6. doi: 10.1007/BF00404787.
4
Plasmid insertion mutagenesis and lac gene fusion with mini-mu bacteriophage transposons.
J Bacteriol. 1984 May;158(2):488-95. doi: 10.1128/jb.158.2.488-495.1984.
5
Construction and analysis of plasmids containing the Escherichia coli serB gene.
Mol Gen Genet. 1984;193(1):72-5. doi: 10.1007/BF00327416.
6
Overlapping and separate controls on the phosphate regulon in Escherichia coli K12.
J Mol Biol. 1983 May 25;166(3):283-308. doi: 10.1016/s0022-2836(83)80086-2.
7
Positive selection for loss of tetracycline resistance.
J Bacteriol. 1980 Aug;143(2):926-33. doi: 10.1128/jb.143.2.926-933.1980.
8
Control of gene expression by a mobile recombinational switch.
Proc Natl Acad Sci U S A. 1980 Aug;77(8):4880-4. doi: 10.1073/pnas.77.8.4880.
9
A model for three-point analysis of random general transduction.
Genetics. 1966 Aug;54(2):405-10. doi: 10.1093/genetics/54.2.405.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验