Metcalf W W, Wanner B L
Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907.
J Bacteriol. 1991 Jan;173(2):587-600. doi: 10.1128/jb.173.2.587-600.1991.
The phn (psiD) gene cluster is induced during Pi limitation and is required for the use of phosphonates (Pn) as a phosphorus (P) source. Twelve independent Pn-negative (Pn-) mutants have lesions in the phn gene cluster which, as determined on the basis of recombination frequencies, is larger than 10 kbp. This distance formed the basis for determining the complete DNA sequence of a 15.6-kbp BamHI fragment, the sequences of which suggested an operon with 17 open reading frames, denoted (in alphabetical order) the phnA to phnQ genes (C.-M. Chen, Q.-Z. Ye, Z. Zhu, B. L. Wanner, and C. T. Walsh, J. Biol. Chem. 265:4461-4471, 1990) Ten Pn- lesions lie in the phnD, phnE, phnH, phnJ, phnK, phnO, and phnP genes. We propose a smaller gene cluster with 14 open reading frames, phnC to phnP, which probably encode transporter and regulatory functions, in addition to proteins needed in Pn biodegradation. On the basis of the effects on phosphite (Pt), Pi ester, and Pi use, we propose that PhnC, PhnD, and PhnE constitute a binding protein-dependent Pn transporter which also transports Pt, Pi esters, and Pi. We propose that PhnO has a regulatory role because a phnO lesion affects no biochemical function, except for those due to polarity. Presumably, the 10 other phn gene products mostly act in an enzyme complex needed for breaking the stable carbon-phosphorus bond. Interestingly, all Pn- mutations abolish the use not only of Pn but also of Pt, in which P is in the +3 oxidation state. Therefore, Pn metabolism and Pt metabolism are related, supporting a biochemical mechanism for carbon-phosphorus bond cleavage which involves redox chemistry at the P center. Furthermore, our discovery of Pi-regulated genes for the assimilation of reduced P suggests that a P redox cycle may be important in biology.
phn(psiD)基因簇在磷限制期间被诱导,并且是利用膦酸盐(Pn)作为磷(P)源所必需的。十二个独立的Pn阴性(Pn-)突变体在phn基因簇中存在损伤,根据重组频率确定,该基因簇大于10 kbp。这个距离构成了确定一个15.6-kbp BamHI片段完整DNA序列的基础,其序列表明有一个含有17个开放阅读框的操纵子,按字母顺序表示为phnA至phnQ基因(C.-M. Chen、Q.-Z. Ye、Z. Zhu、B. L. Wanner和C. T. Walsh,《生物化学杂志》265:4461 - 4471,1990年)。十个Pn-损伤位于phnD、phnE、phnH、phnJ、phnK、phnO和phnP基因中。我们提出一个较小的基因簇,含有14个开放阅读框,即phnC至phnP,除了Pn生物降解所需的蛋白质外,可能还编码转运和调节功能。基于对亚磷酸盐(Pt)、磷酸酯和磷利用的影响,我们提出PhnC、PhnD和PhnE构成一个依赖结合蛋白的Pn转运体,它也转运Pt、磷酸酯和磷。我们提出PhnO具有调节作用,因为phnO损伤除了由于极性导致的那些影响外,不影响任何生化功能。据推测,其他10个phn基因产物大多在打破稳定碳 - 磷键所需的酶复合物中起作用。有趣的是,所有Pn-突变不仅消除了对Pn的利用,也消除了对Pt的利用,其中P处于+3氧化态。因此,Pn代谢和Pt代谢是相关的,支持了一种涉及P中心氧化还原化学的碳 - 磷键裂解的生化机制。此外,我们对还原态磷同化的磷调节基因的发现表明,磷氧化还原循环在生物学中可能很重要。