Lee K S, Metcalf W W, Wanner B L
Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907.
J Bacteriol. 1992 Apr;174(8):2501-10. doi: 10.1128/jb.174.8.2501-2510.1992.
We screened mini-Mu plasmid libraries from Enterobacter aerogenes IFO 12010 for plasmids that complement Escherichia coli phn mutants that cannot use phosphonates (Pn) as the sole source of phosphorus (P). We isolated two kinds of plasmids that, unexpectedly, encode genes for different metabolic pathways. One kind complements E. coli mutants with both Pn transport and Pn catalysis genes deleted; these plasmids allow degradation of the 2-carbon-substituted Pn alpha-aminoethylphosphonate but not of unsubstituted alkyl Pn. This substrate specificity is characteristic of a phosphonatase pathway, which is absent in E. coli. The other kind complements E. coli mutants with Pn catalysis genes deleted but not those with both transport and catalysis genes deleted; these plasmids allow degradation of both substituted and unsubstituted Pn. Such a broad substrate specificity is characteristic of a carbon-phosphorus (C-P) lyase pathway, which is common in gram-negative bacteria, including E. coli. Further proof that the two kinds of plasmids encode genes for different pathways was demonstrated by the lack of DNA homology between the plasmids. In particular, the phosphonatase clone from E. aerogenes failed to hybridize to the E. coli phnCDEFGHIJKLMNOP gene cluster for Pn uptake and degradation, while the E. aerogenes C-P lyase clone hybridized strongly to the E. coli phnGHIJKLM genes encoding C-P lyase but not to the E. coli phnCDE genes encoding Pn transport. Specific hybridization by the E. aerogenes C-P lyase plasmid to the E. coli phnF, phnN, phnO, and phnP genes was not determined. Furthermore, we showed that one or more genes encoding the apparent E. aerogenes phosphonatase pathway, like the E. coli phnC-to-phnP gene cluster, is under phosphate regulon control in E. coli. This highlights the importance of Pn in bacterial P assimilation in nature.
我们从产气肠杆菌IFO 12010中筛选了mini-Mu质粒文库,以寻找能互补大肠杆菌中不能将膦酸盐(Pn)作为唯一磷源(P)利用的phn突变体的质粒。我们分离出了两种质粒,出乎意料的是,它们编码不同代谢途径的基因。一种能互补同时缺失Pn转运和Pn催化基因的大肠杆菌突变体;这些质粒允许降解含2个碳取代基的Pnα-氨基乙基膦酸,但不能降解未取代的烷基Pn。这种底物特异性是磷酸酶途径的特征,而大肠杆菌中不存在该途径。另一种能互补缺失Pn催化基因但不互补同时缺失转运和催化基因的大肠杆菌突变体;这些质粒允许降解取代和未取代的Pn。这种广泛的底物特异性是碳-磷(C-P)裂解酶途径的特征,该途径在包括大肠杆菌在内的革兰氏阴性菌中很常见。两种质粒之间缺乏DNA同源性,进一步证明了这两种质粒编码不同途径的基因。特别是,来自产气肠杆菌的磷酸酶克隆未能与大肠杆菌中用于Pn摄取和降解的phnCDEFGHIJKLMNOP基因簇杂交,而产气肠杆菌的C-P裂解酶克隆与编码C-P裂解酶的大肠杆菌phnGHIJKLM基因强烈杂交,但不与编码Pn转运的大肠杆菌phnCDE基因杂交。未确定产气肠杆菌C-P裂解酶质粒与大肠杆菌phnF、phnN、phnO和phnP基因的特异性杂交情况。此外,我们还表明,与大肠杆菌phnC到phnP基因簇一样,编码明显的产气肠杆菌磷酸酶途径的一个或多个基因在大肠杆菌中受磷酸盐调节子控制。这突出了Pn在自然界细菌磷同化中的重要性。