Suppr超能文献

与人类碳酸酐酶II复合的129Xe-隐色团生物传感器的结构

Structure of a 129Xe-cryptophane biosensor complexed with human carbonic anhydrase II.

作者信息

Aaron Julie A, Chambers Jennifer M, Jude Kevin M, Di Costanzo Luigi, Dmochowski Ivan J, Christianson David W

机构信息

Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, USA.

出版信息

J Am Chem Soc. 2008 Jun 4;130(22):6942-3. doi: 10.1021/ja802214x. Epub 2008 May 8.

Abstract

Cryptophanes represent an exciting class of xenon-encapsulating molecules that can be exploited as probes for nuclear magnetic resonance imaging. The 1.70 A resolution crystal structure of a cryptophane-derivatized benezenesulfonamide complexed with human carbonic anhydrase II shows how an encapsulated xenon atom can be directed to a specific biological target. The crystal structure confirms binding measurements indicating that the cryptophane cage does not strongly interact with the surface of the protein, which may enhance the sensitivity of 129Xe NMR spectroscopic measurements in solution.

摘要

穴番是一类令人兴奋的能够包封氙气的分子,可作为核磁共振成像的探针。一种穴番衍生的苯磺酰胺与人类碳酸酐酶II形成的配合物的晶体结构分辨率为1.70 Å,该结构展示了一个被包封的氙原子如何被导向一个特定的生物靶点。晶体结构证实了结合测量结果,表明穴番笼与蛋白质表面的相互作用不强,这可能会提高溶液中129Xe NMR光谱测量的灵敏度。

相似文献

1
Structure of a 129Xe-cryptophane biosensor complexed with human carbonic anhydrase II.
J Am Chem Soc. 2008 Jun 4;130(22):6942-3. doi: 10.1021/ja802214x. Epub 2008 May 8.
2
Cryptophane xenon-129 nuclear magnetic resonance biosensors targeting human carbonic anhydrase.
J Am Chem Soc. 2009 Jan 21;131(2):563-9. doi: 10.1021/ja806092w.
3
A xenon-129 biosensor for monitoring MHC-peptide interactions.
Angew Chem Int Ed Engl. 2009;48(23):4142-5. doi: 10.1002/anie.200806149.
4
Temperature response of 129Xe depolarization transfer and its application for ultrasensitive NMR detection.
Phys Rev Lett. 2008 Jun 27;100(25):257603. doi: 10.1103/PhysRevLett.100.257603. Epub 2008 Jun 25.
5
Effect of pH and counterions on the encapsulation properties of xenon in water-soluble cryptophanes.
Chemistry. 2010 Nov 15;16(43):12941-6. doi: 10.1002/chem.201001170.
6
(129)Xe NMR Relaxation-Based Macromolecular Sensing.
J Am Chem Soc. 2016 Aug 10;138(31):9747-50. doi: 10.1021/jacs.6b02758. Epub 2016 Jul 29.
7
Water soluble cucurbit[6]uril derivative as a potential Xe carrier for 129Xe NMR-based biosensors.
Chem Commun (Camb). 2008 Jun 28(24):2756-8. doi: 10.1039/b805724a. Epub 2008 May 19.
8
9
Functionalized 129Xe contrast agents for magnetic resonance imaging.
Curr Opin Chem Biol. 2010 Feb;14(1):97-104. doi: 10.1016/j.cbpa.2009.10.009. Epub 2009 Nov 13.
10

引用本文的文献

1
Ultrasensitive Xe Magnetic Resonance Imaging: From Clinical Monitoring to Molecular Sensing.
Adv Sci (Weinh). 2025 Feb;12(8):e2413426. doi: 10.1002/advs.202413426. Epub 2025 Jan 21.
2
Cryptophane-xenon complexes for Xe MRI applications.
RSC Adv. 2021;11(13):7693-7703. doi: 10.1039/d0ra10765d. Epub 2021 Feb 17.
3
Molecular Sensing with Host Systems for Hyperpolarized Xe.
Molecules. 2020 Oct 11;25(20):4627. doi: 10.3390/molecules25204627.
4
Atomic Details of Carbon-Based Nanomolecules Interacting with Proteins.
Molecules. 2020 Aug 4;25(15):3555. doi: 10.3390/molecules25153555.
5
Metabolic and Molecular Imaging with Hyperpolarised Tracers.
Mol Imaging Biol. 2018 Dec;20(6):902-918. doi: 10.1007/s11307-018-1265-0.
6
Cryptophane Nanoscale Assemblies Expand Xe NMR Biosensing.
Anal Chem. 2018 Jun 19;90(12):7730-7738. doi: 10.1021/acs.analchem.8b01630. Epub 2018 Jun 1.
7
Understanding ligand-receptor non-covalent binding kinetics using molecular modeling.
Front Biosci (Landmark Ed). 2017 Jan 1;22(6):960-981. doi: 10.2741/4527.
8
An Expanded Palette of Xenon-129 NMR Biosensors.
Acc Chem Res. 2016 Oct 18;49(10):2179-2187. doi: 10.1021/acs.accounts.6b00309. Epub 2016 Sep 19.
9
Enantiopure Cryptophane-Xe Nuclear Magnetic Resonance Biosensors Targeting Carbonic Anhydrase.
Supramol Chem. 2015 Jan 1;27(1-2):65-71. doi: 10.1080/10610278.2014.906601.
10
Cell-compatible, integrin-targeted cryptophane-Xe NMR biosensors.
Chem Sci. 2011 Jun;2(6):1103-1110. doi: 10.1039/C1SC00041A.

本文引用的文献

1
Cryptophane xenon-129 nuclear magnetic resonance biosensors targeting human carbonic anhydrase.
J Am Chem Soc. 2009 Jan 21;131(2):563-9. doi: 10.1021/ja806092w.
3
Thermodynamics of xenon binding to cryptophane in water and human plasma.
J Am Chem Soc. 2007 Aug 1;129(30):9262-3. doi: 10.1021/ja072965p. Epub 2007 Jul 7.
4
Carbonic anhydrases as targets for medicinal chemistry.
Bioorg Med Chem. 2007 Jul 1;15(13):4336-50. doi: 10.1016/j.bmc.2007.04.020. Epub 2007 Apr 19.
5
Functional lung imaging using hyperpolarized gas MRI.
J Magn Reson Imaging. 2007 May;25(5):910-23. doi: 10.1002/jmri.20876.
6
Diastereomeric Xe chemical shifts in tethered cryptophane cages.
J Am Chem Soc. 2006 Dec 27;128(51):16980-8. doi: 10.1021/ja066661z.
9
Molecular imaging using a targeted magnetic resonance hyperpolarized biosensor.
Science. 2006 Oct 20;314(5798):446-9. doi: 10.1126/science.1131847.
10
Optimization of xenon biosensors for detection of protein interactions.
Chembiochem. 2006 Jan;7(1):65-73. doi: 10.1002/cbic.200500327.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验