Suppr超能文献

一种用于预测子宫内膜异位症的逻辑模型。

A logistic model for the prediction of endometriosis.

作者信息

Stegmann Barbara J, Funk Michele Jonsson, Sinaii Ninet, Hartmann Katherine E, Segars James, Nieman Lynnette K, Stratton Pamela

机构信息

Reproductive Biology and Medicine Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892-1109, USA.

出版信息

Fertil Steril. 2009 Jan;91(1):51-5. doi: 10.1016/j.fertnstert.2007.11.038. Epub 2008 May 7.

Abstract

OBJECTIVE

To develop a model that uses individual and lesion characteristics to help surgeons choose lesions that have a high probability of containing histologically confirmed endometriosis.

DESIGN

Secondary analysis of prospectively collected information.

SETTING

Government research hospital in the United States.

PATIENT(S): Healthy women 18-45 years of age, with chronic pelvic pain and possible endometriosis, who were enrolled in a clinical trial.

INTERVENTION(S): All participants underwent laparoscopy, and information was collected on all visible lesions. Lesion data were randomly allocated to a training and test data set.

MAIN OUTCOME MEASURE(S): Predictive logistic regression, with the outcome of interest being histologic diagnosis of endometriosis.

RESULT(S): After validation, the model was applied to the complete data set, with a sensitivity of 88.4% and specificity of 24.6%. The positive predictive value was 69.2%, and the negative predictive value was 53.3%, equating to correct classification of a lesion of 66.5%. Mixed color; larger width; and location in the ovarian fossa, colon, or appendix were most strongly associated with the presence of endometriosis.

CONCLUSION(S): This model identified characteristics that indicate high and low probabilities of biopsy-proven endometriosis. It is useful as a guide in choosing appropriate lesions for biopsy, but the improvement using the model is not great enough to replace histologic confirmation of endometriosis.

摘要

目的

开发一种利用个体和病变特征的模型,以帮助外科医生选择组织学确诊为子宫内膜异位症可能性高的病变。

设计

对前瞻性收集的信息进行二次分析。

地点

美国的一家政府研究医院。

患者

年龄在18 - 45岁、患有慢性盆腔疼痛且可能患有子宫内膜异位症的健康女性,她们参与了一项临床试验。

干预措施

所有参与者均接受腹腔镜检查,并收集所有可见病变的信息。病变数据被随机分配到训练数据集和测试数据集中。

主要观察指标

预测性逻辑回归,关注的结果是子宫内膜异位症的组织学诊断。

结果

经过验证后,该模型应用于完整数据集,灵敏度为88.4%,特异度为24.6%。阳性预测值为69.2%,阴性预测值为53.3%,相当于病变正确分类率为66.5%。颜色混合;宽度较大;以及位于卵巢窝、结肠或阑尾处与子宫内膜异位症的存在关联最为密切。

结论

该模型识别出了提示活检证实为子宫内膜异位症可能性高低的特征。它可作为选择合适病变进行活检的指南,但使用该模型带来的改善程度不足以取代子宫内膜异位症的组织学确诊。

相似文献

1
A logistic model for the prediction of endometriosis.
Fertil Steril. 2009 Jan;91(1):51-5. doi: 10.1016/j.fertnstert.2007.11.038. Epub 2008 May 7.
2
Imaging modalities for the non-invasive diagnosis of endometriosis.
Cochrane Database Syst Rev. 2016 Feb 26;2(2):CD009591. doi: 10.1002/14651858.CD009591.pub2.
4
Endometriosis: correlation between histologic and visual findings at laparoscopy.
Am J Obstet Gynecol. 2001 Jun;184(7):1407-11; discussion 1411-3. doi: 10.1067/mob.2001.115747.
5
Early identification of women with endometriosis by means of a simple patient-completed questionnaire screening tool: a diagnostic study.
Fertil Steril. 2021 Dec;116(6):1580-1589. doi: 10.1016/j.fertnstert.2021.07.1205. Epub 2021 Sep 17.
7
Blood biomarkers for the non-invasive diagnosis of endometriosis.
Cochrane Database Syst Rev. 2016 May 1;2016(5):CD012179. doi: 10.1002/14651858.CD012179.
8
Relating pelvic pain location to surgical findings of endometriosis.
Obstet Gynecol. 2011 Aug;118(2 Pt 1):223-230. doi: 10.1097/AOG.0b013e318223fed0.
9
Using location, color, size, and depth to characterize and identify endometriosis lesions in a cohort of 133 women.
Fertil Steril. 2008 Jun;89(6):1632-6. doi: 10.1016/j.fertnstert.2007.05.042. Epub 2007 Jul 26.

引用本文的文献

2
Clinical use of artificial intelligence in endometriosis: a scoping review.
NPJ Digit Med. 2022 Aug 4;5(1):109. doi: 10.1038/s41746-022-00638-1.
3
A new validated screening method for endometriosis diagnosis based on patient questionnaires.
EClinicalMedicine. 2022 Jan 10;44:101263. doi: 10.1016/j.eclinm.2021.101263. eCollection 2022 Feb.
5
Imaging modalities for the non-invasive diagnosis of endometriosis.
Cochrane Database Syst Rev. 2016 Feb 26;2(2):CD009591. doi: 10.1002/14651858.CD009591.pub2.
6
Relating pelvic pain location to surgical findings of endometriosis.
Obstet Gynecol. 2011 Aug;118(2 Pt 1):223-230. doi: 10.1097/AOG.0b013e318223fed0.
7
Chronic pelvic pain and endometriosis: translational evidence of the relationship and implications.
Hum Reprod Update. 2011 May-Jun;17(3):327-46. doi: 10.1093/humupd/dmq050. Epub 2010 Nov 23.

本文引用的文献

1
Interobserver variability in the diagnosis of minimal and mild endometriosis.
Eur J Obstet Gynecol Reprod Biol. 2005 Oct 1;122(2):213-7. doi: 10.1016/j.ejogrb.2005.02.002.
2
Diagnosis of endometriosis with imaging: a review.
Eur Radiol. 2006 Feb;16(2):285-98. doi: 10.1007/s00330-005-2882-y. Epub 2005 Sep 10.
3
Diagnosis of pelvic endometriosis with use of macroscopic versus histologic findings.
Fertil Steril. 2005 Jul;84(1):12-5. doi: 10.1016/j.fertnstert.2004.09.042.
4
ESHRE guideline for the diagnosis and treatment of endometriosis.
Hum Reprod. 2005 Oct;20(10):2698-704. doi: 10.1093/humrep/dei135. Epub 2005 Jun 24.
5
ACOG Committee Opinion. Number 310, April 2005. Endometriosis in adolescents.
Obstet Gynecol. 2005 Apr;105(4):921-7. doi: 10.1097/00006250-200504000-00058.
6
Accuracy of laparoscopy in the diagnosis of endometriosis: a systematic quantitative review.
BJOG. 2004 Nov;111(11):1204-12. doi: 10.1111/j.1471-0528.2004.00433.x.
7
Typical and subtle atypical presentations of endometriosis.
Curr Opin Obstet Gynecol. 2004 Oct;16(5):431-7. doi: 10.1097/00001703-200410000-00013.
8
Non-invasive methods of diagnosis of endometriosis.
Curr Opin Obstet Gynecol. 2003 Dec;15(6):519-22. doi: 10.1097/00001703-200312000-00011.
9
Endometriosis: correlation between histologic and visual findings at laparoscopy.
Am J Obstet Gynecol. 2003 Jun;188(6):1663; author reply 1663-4. doi: 10.1067/mob.2003.426.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验