Suppr超能文献

用于早期检测前列腺癌的分类模型。

Classification models for early detection of prostate cancer.

作者信息

Wichard Joerg D, Cammann Henning, Stephan Carsten, Tolxdorff Thomas

机构信息

Institute of Medical Informatics, Charité - Universitätsmedizin, Hindenburgdamm 30, 12200 Berlin, Germany.

出版信息

J Biomed Biotechnol. 2008;2008:218097. doi: 10.1155/2008/218097.

Abstract

We investigate the performance of different classification models and their ability to recognize prostate cancer in an early stage. We build ensembles of classification models in order to increase the classification performance. We measure the performance of our models in an extensive cross-validation procedure and compare different classification models. The datasets come from clinical examinations and some of the classification models are already in use to support the urologists in their clinical work.

摘要

我们研究了不同分类模型的性能及其在早期识别前列腺癌的能力。我们构建分类模型集成以提高分类性能。我们在广泛的交叉验证过程中测量模型的性能,并比较不同的分类模型。数据集来自临床检查,并且一些分类模型已用于支持泌尿科医生的临床工作。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/95bc/2366047/c5088d559e86/JBB2008-218097.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验