Suppr超能文献

Quinolinate synthetase: the oxygen-sensitive site of de novo NAD(P)+ biosynthesis.

作者信息

Gardner P R, Fridovich I

机构信息

Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710.

出版信息

Arch Biochem Biophys. 1991 Jan;284(1):106-11. doi: 10.1016/0003-9861(91)90270-s.

Abstract

The ability of niacin to relieve the growth-inhibiting effect of hyperoxia on Escherichia coli can be attributed to the dioxygen sensitivity of quinolinate synthetase. The activity of this enzyme within E. coli was diminished by exposure of the cells to 4.2 atm O2, while the activity in extracts was rapidly decreased by 0.2 atm O2. Neither catalase nor superoxide dismutase afforded detectable protection against the inactivating effect of O2, indicating that H2O2 and O2- were not significant intermediates in this process. Nevertheless, H2O2 at 1.0 mM did inactivate quinolinate synthetase, even under anaerobic conditions and in the absence of catalatic activity which might have generated O2. Addition of paraquat to aerobic cultures of E. coli caused an inactivation of quinolinate synthetase, which may be explained in terms of an increase in the production of H2O2. The O2-dependent inactivation of quinolinate synthetase in extracts was gradually reversed during anaerobic incubation and this reactivation was blocked by alpha, alpha'-dipyridyl or by 1,10-phenanthroline. The sequence of the quinolinate synthetase "A" protein contains a--cys-w-x-cys-y-z-cys--sequence, which is characteristic of (Fe-S)4-containing proteins. This sequence, together with the effect of the Fe(II)-chelating agents, suggests that the O2-sensitive site of quinolinate synthetase is an iron-sulfur cluster which is essential for the dehydration reaction catalyzed by the A protein.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验