Suppr超能文献

使用个体患者数据对一步法和两步法Meta分析模型进行比较。

Comparison of one-step and two-step meta-analysis models using individual patient data.

作者信息

Mathew Thomas, Nordström Kenneth

机构信息

Department of Mathematics and Statistics, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA.

出版信息

Biom J. 2010 Apr;52(2):271-87. doi: 10.1002/bimj.200900143.

Abstract

The problem of combining information from separate trials is a key consideration when performing a meta-analysis or planning a multicentre trial. Although there is a considerable journal literature on meta-analysis based on individual patient data (IPD), i.e. a one-step IPD meta-analysis, versus analysis based on summary data, i.e. a two-step IPD meta-analysis, recent articles in the medical literature indicate that there is still confusion and uncertainty as to the validity of an analysis based on aggregate data. In this study, we address one of the central statistical issues by considering the estimation of a linear function of the mean, based on linear models for summary data and for IPD. The summary data from a trial is assumed to comprise the best linear unbiased estimator, or maximum likelihood estimator of the parameter, along with its covariance matrix. The setup, which allows for the presence of random effects and covariates in the model, is quite general and includes many of the commonly employed models, for example, linear models with fixed treatment effects and fixed or random trial effects. For this general model, we derive a condition under which the one-step and two-step IPD meta-analysis estimators coincide, extending earlier work considerably. The implications of this result for the specific models mentioned above are illustrated in detail, both theoretically and in terms of two real data sets, and the roles of balance and heterogeneity are highlighted. Our analysis also shows that when covariates are present, which is typically the case, the two estimators coincide only under extra simplifying assumptions, which are somewhat unrealistic in practice.

摘要

在进行荟萃分析或规划多中心试验时,整合来自不同试验的信息是一个关键考量因素。尽管有大量关于基于个体患者数据(IPD)的荟萃分析(即一步法IPD荟萃分析)与基于汇总数据的分析(即两步法IPD荟萃分析)的期刊文献,但医学文献中的近期文章表明,对于基于汇总数据的分析的有效性仍存在困惑和不确定性。在本研究中,我们通过基于汇总数据和IPD的线性模型考虑均值线性函数的估计,来解决一个核心统计问题。假设试验的汇总数据包括参数的最佳线性无偏估计量或最大似然估计量及其协方差矩阵。该设置允许模型中存在随机效应和协变量,非常通用,包括许多常用模型,例如具有固定治疗效应和固定或随机试验效应的线性模型。对于这个通用模型,我们推导了一步法和两步法IPD荟萃分析估计量重合的条件,大大扩展了早期的工作。从理论和两个实际数据集方面详细说明了该结果对上述特定模型的影响,并强调了平衡性和异质性的作用。我们的分析还表明,当存在协变量时(通常如此),这两个估计量仅在额外的简化假设下才会重合,而这些假设在实际中有些不现实。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验