Güntert P, Braun W, Wüthrich K
Institut für Molekularbiologie und Biophysik Eidgenössische Technische Hochschule-Hönggerberg Zürich, Switzerland.
J Mol Biol. 1991 Feb 5;217(3):517-30. doi: 10.1016/0022-2836(91)90754-t.
A novel procedure for efficient computation of three-dimensional protein structures from nuclear magnetic resonance (n.m.r.) data in solution is described, which is based on using the program DIANA in combination with the supporting programs CALIBA, HABAS and GLOMSA. The first part of this paper describes the new programs DIANA. CALIBA and GLOMSA. DIANA is a new, fully vectorized implementation of the variable target function algorithm for the computation of protein structures from n.m.r. data. Its main advantages, when compared to previously available programs using the variable target function algorithm, are a significant reduction of the computation time, and a novel treatment of experimental distance constraints involving diastereotopic groups of hydrogen atoms that were not individually assigned. CALIBA converts the measured nuclear Overhauser effects into upper distance limits and thus prepares the input for the previously described program HABAS and for DIANA. GLOMSA is used for obtaining individual assignments for pairs of diastereotopic substituents by comparison of the experimental constraints with preliminary results of the structure calculations. With its general outlay, the presently used combination of the four programs is particularly user-friendly. In the second part of the paper, initial results are presented on the influence of the novel DIANA treatment of diastereotopic protons on the quality of the structures obtained, and a systematic study of the central processing unit times needed for the same protein structure calculation on a range of different, commonly available computers is described.
本文描述了一种基于使用DIANA程序结合支持程序CALIBA、HABAS和GLOMSA,从溶液中的核磁共振(n.m.r.)数据高效计算三维蛋白质结构的新方法。本文的第一部分介绍了新程序DIANA、CALIBA和GLOMSA。DIANA是一种用于从n.m.r.数据计算蛋白质结构的可变目标函数算法的全新、完全向量化实现。与之前使用可变目标函数算法的程序相比,其主要优点是显著减少了计算时间,并且对涉及未单独指定的氢原子非对映异位基团的实验距离约束进行了新颖的处理。CALIBA将测量的核Overhauser效应转换为距离上限,从而为先前描述的程序HABAS和DIANA准备输入。GLOMSA用于通过将实验约束与结构计算的初步结果进行比较,获得非对映异位取代基对的单独归属。就总体费用而言,目前使用的这四个程序的组合特别便于用户使用。在本文的第二部分,给出了关于DIANA对非对映异位质子的新颖处理对所得结构质量的影响的初步结果,并描述了在一系列不同的常用计算机上对同一蛋白质结构计算所需的中央处理器时间的系统研究。