Suppr超能文献

于乐:提高无结构化合物-蛋白质相互作用预测的泛化能力。

Yuel: Improving the Generalizability of Structure-Free Compound-Protein Interaction Prediction.

机构信息

Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania 17033, United States.

Department of Biochemistry & Molecular Biology, Penn State College of Medicine, Hershey, Pennsylvania 17033, United States.

出版信息

J Chem Inf Model. 2022 Feb 14;62(3):463-471. doi: 10.1021/acs.jcim.1c01531. Epub 2022 Feb 1.

Abstract

Predicting binding affinities between small molecules and the protein target is at the core of computational drug screening and drug target identification. Deep learning-based approaches have recently been adapted to predict binding affinities and they claim to achieve high prediction accuracy in their tests; we show that these approaches do not generalize, that is, they fail to predict interactions between unknown proteins and unknown small molecules. To address these shortcomings, we develop a new compound-protein interaction predictor, Yuel, which predicts compound-protein interactions with a higher generalizability than the existing methods. Upon comprehensive tests on various data sets, we find that out of all the deep-learning approaches surveyed, Yuel manifests the best ability to predict interactions between unknown compounds and unknown proteins.

摘要

预测小分子和蛋白质靶标之间的结合亲和力是计算药物筛选和药物靶标识别的核心。基于深度学习的方法最近被用于预测结合亲和力,并且声称在测试中可以达到很高的预测精度;我们表明这些方法没有泛化能力,也就是说,它们无法预测未知蛋白质和未知小分子之间的相互作用。为了解决这些缺点,我们开发了一种新的化合物-蛋白质相互作用预测器 Yuel,它比现有方法具有更高的通用性,可以预测化合物-蛋白质的相互作用。通过对各种数据集的综合测试,我们发现在所调查的所有深度学习方法中,Yuel 表现出了预测未知化合物和未知蛋白质之间相互作用的最佳能力。

相似文献

6
Predicting drug-target interaction network using deep learning model.利用深度学习模型预测药物-靶标相互作用网络。
Comput Biol Chem. 2019 Jun;80:90-101. doi: 10.1016/j.compbiolchem.2019.03.016. Epub 2019 Mar 25.

引用本文的文献

8
Whole proteome mapping of compound-protein interactions.化合物-蛋白质相互作用的全蛋白质组图谱绘制。
Curr Res Chem Biol. 2022;2. doi: 10.1016/j.crchbi.2022.100035. Epub 2022 Sep 12.

本文引用的文献

7
DeepDTA: deep drug-target binding affinity prediction.深度 DTA:深度药物-靶标结合亲和力预测。
Bioinformatics. 2018 Sep 1;34(17):i821-i829. doi: 10.1093/bioinformatics/bty593.
8
Deep learning for biology.用于生物学的深度学习
Nature. 2018 Feb 22;554(7693):555-557. doi: 10.1038/d41586-018-02174-z.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验