Reddy L Harivardhan, Khoury Hania, Paci Angelo, Deroussent Alain, Ferreira Humberto, Dubernet Catherine, Declèves Xavier, Besnard Madeleine, Chacun Helène, Lepêtre-Mouelhi Sinda, Desmaële Didier, Rousseau Bernard, Laugier Christelle, Cintrat Jean-Christophe, Vassal Gilles, Couvreur Patrick
Faculté de Pharmacie, Unité Mixte de Recherche Centre National de la Recherche Scientifique 8612, Institut Fédératif de Recherche 141, Université Paris XI, Châtenay-Malabry cedex, France.
Drug Metab Dispos. 2008 Aug;36(8):1570-7. doi: 10.1124/dmd.108.020735. Epub 2008 May 12.
Gemcitabine (2',2'-difluorodeoxyribofuranosylcytosine; dFdC) is an anticancer nucleoside analog active against wide variety of solid tumors. However, this compound is rapidly inactivated by enzymatic deamination and can also induce drug resistance. To overcome the above drawbacks, we recently designed a new squalenoyl nanomedicine of dFdC [4-N-trisnorsqualenoyl-gemcitabine (SQdFdC)] by covalently coupling gemcitabine with the 1,1',2-trisnorsqualenic acid; the resultant nanomedicine displayed impressively greater anticancer activity compared with the parent drug in an experimental murine model. In the present study, we report that SQdFdC nanoassemblies triggered controlled and prolonged release of dFdC and displayed considerably greater t(1/2) (approximately 3.9-fold), mean residence time (approximately 7.5-fold) compared with the dFdC administered as a free drug in mice. It was also observed that the linkage of gemcitabine to the 1,1',2-trisnorsqualenic acid noticeably delayed the metabolism of dFdC into its inactive difluorodeoxyuridine (dFdU) metabolite, compared with dFdC. Additionally, the elimination of SQdFdC nanoassemblies was considerably lower compared with free dFdC, as indicated by lower radioactivity found in urine and kidneys, in accordance with the plasmatic concentrations of dFdU. SQdFdC nanoassemblies also underwent considerably higher distribution to the organs of the reticuloendothelial system, such as spleen and liver (p < 0.05), both after single- or multiple-dose administration schedule. Herein, this paper brings comprehensive pharmacokinetic and biodistribution insights that may explain the previously observed greater efficacy of SQdFdC nanoassemblies against experimental leukemia.
吉西他滨(2',2'-二氟脱氧呋喃核糖基胞嘧啶;dFdC)是一种对多种实体瘤有效的抗癌核苷类似物。然而,该化合物会被酶促脱氨迅速灭活,并且还会诱导耐药性。为克服上述缺点,我们最近通过将吉西他滨与1,1',2-三降鲨烯酸共价偶联,设计了一种新的dFdC鲨烯酰纳米药物[4-N-三降鲨烯酰-吉西他滨(SQdFdC)];在实验小鼠模型中,所得纳米药物与母体药物相比显示出显著更高的抗癌活性。在本研究中,我们报告SQdFdC纳米组装体引发了dFdC的可控和持续释放,并且与在小鼠中作为游离药物给药的dFdC相比,显示出显著更长的t(1/2)(约3.9倍)、平均驻留时间(约7.5倍)。还观察到,与dFdC相比,吉西他滨与1,1',2-三降鲨烯酸的连接显著延迟了dFdC代谢为其无活性的二氟脱氧尿苷(dFdU)代谢物。此外,与游离dFdC相比,SQdFdC纳米组装体的消除率显著更低,尿液和肾脏中较低的放射性表明了这一点,这与dFdU的血浆浓度一致。在单剂量或多剂量给药方案后,SQdFdC纳米组装体在网状内皮系统的器官,如脾脏和肝脏中也有显著更高的分布(p < 0.05)。在此,本文带来了全面的药代动力学和生物分布见解,这可能解释了先前观察到的SQdFdC纳米组装体对实验性白血病更高的疗效。