Bettencourt Luís M A, Ribeiro Ruy M
Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America.
PLoS One. 2008 May 14;3(5):e2185. doi: 10.1371/journal.pone.0002185.
Fast changes in human demographics worldwide, coupled with increased mobility, and modified land uses make the threat of emerging infectious diseases increasingly important. Currently there is worldwide alert for H5N1 avian influenza becoming as transmissible in humans as seasonal influenza, and potentially causing a pandemic of unprecedented proportions. Here we show how epidemiological surveillance data for emerging infectious diseases can be interpreted in real time to assess changes in transmissibility with quantified uncertainty, and to perform running time predictions of new cases and guide logistics allocations.
METHODOLOGY/PRINCIPAL FINDINGS: We develop an extension of standard epidemiological models, appropriate for emerging infectious diseases, that describes the probabilistic progression of case numbers due to the concurrent effects of (incipient) human transmission and multiple introductions from a reservoir. The model is cast in terms of surveillance observables and immediately suggests a simple graphical estimation procedure for the effective reproductive number R (mean number of cases generated by an infectious individual) of standard epidemics. For emerging infectious diseases, which typically show large relative case number fluctuations over time, we develop a bayesian scheme for real time estimation of the probability distribution of the effective reproduction number and show how to use such inferences to formulate significance tests on future epidemiological observations.
CONCLUSIONS/SIGNIFICANCE: Violations of these significance tests define statistical anomalies that may signal changes in the epidemiology of emerging diseases and should trigger further field investigation. We apply the methodology to case data from World Health Organization reports to place bounds on the current transmissibility of H5N1 influenza in humans and establish a statistical basis for monitoring its evolution in real time.
全球人口结构的快速变化,加上流动性增加以及土地利用方式的改变,使得新发传染病的威胁日益重要。目前,全球都在警惕H5N1禽流感在人际间的传播能力变得与季节性流感相当,并有可能引发一场规模空前的大流行。在此,我们展示了如何实时解读新发传染病的流行病学监测数据,以评估传播能力的变化并量化不确定性,同时对新发病例进行实时预测并指导后勤资源分配。
方法/主要发现:我们扩展了适用于新发传染病的标准流行病学模型,该模型描述了由于(初始)人际传播和来自储存宿主的多次引入的共同作用导致病例数的概率变化过程。该模型依据监测可观测值构建,并直接提出了一种针对标准流行病的有效再生数R(一个感染个体产生的平均病例数)的简单图形估计程序。对于通常随时间显示出较大相对病例数波动的新发传染病,我们开发了一种贝叶斯方案,用于实时估计有效再生数的概率分布,并展示了如何利用此类推断对未来的流行病学观察进行显著性检验。
结论/意义:这些显著性检验的违背定义了统计异常,这可能预示着新发疾病流行病学的变化,应引发进一步的实地调查。我们将该方法应用于世界卫生组织报告中的病例数据,以界定H5N1流感目前在人际间的传播能力范围,并为实时监测其演变建立统计基础。