Clancey Erin, Lofgren Eric T
Paul G. Allen School for Global Health, Washington State University, Pullman, WA, USA.
Epidemiol Methods. 2025 Jan;14(1). doi: 10.1515/em-2024-0020. Epub 2025 Jan 6.
EpiEstim is a popular statistical framework designed to produce real-time estimates of the time-varying reproductive number, . However, the methods in EpiEstim have not been tested in small, non-randomly mixing populations to determine if the resulting estimates are temporally biased. Thus, we evaluate the temporal performance of EpiEstim estimates when population structure is present, and then demonstrate how to recover temporal accuracy using an approximation with EpiEstim.
Following a real-world example of a COVID-19 outbreak in a small university town, we generate simulated case report data from a two-population mechanistic model with an explicit generation interval distribution and expression to compute true . To quantify the temporal bias, we compare the time points when true and estimated from EpiEstim fall below the critical threshold of 1.
When population structure is present but not accounted for estimates from EpiEstim prematurely fall below 1. When incidence data is aggregated over weeks the estimates from EpiEstim fall below the critical threshold at a later time point than estimates from daily data, however, population structure does not further affect timing differences between aggregated and daily data. Last, we show it is possible to recover the correct timing when by using the lagging subpopulation outbreak to estimate for the total population with EpiEstim.
is a key parameter used for epidemic response. Since population structure can bias near the critical threshold of 1, EpiEstim should be prudently applied to incidence data from structured populations.
EpiEstim是一个广受欢迎的统计框架,旨在对随时间变化的繁殖数进行实时估计。然而,EpiEstim中的方法尚未在小型、非随机混合的人群中进行测试,以确定所得估计值在时间上是否存在偏差。因此,我们评估了存在人群结构时EpiEstim估计值的时间性能,然后展示了如何使用EpiEstim的近似值来恢复时间准确性。
以一个小型大学城新冠疫情爆发的实际例子为基础,我们从一个具有明确代间隔分布和表达式的两人群机械模型生成模拟病例报告数据,以计算真实的。为了量化时间偏差,我们比较了真实的和EpiEstim估计的低于临界阈值1的时间点。
当存在人群结构但未考虑时,EpiEstim的估计值会过早低于1。当发病率数据按周汇总时,EpiEstim的估计值比每日数据的估计值在更晚的时间点低于临界阈值,然而,人群结构不会进一步影响汇总数据和每日数据之间的时间差异。最后,我们表明,通过使用滞后亚人群爆发情况,利用EpiEstim估计总人口的,可以恢复正确的时间。
是用于疫情应对的关键参数。由于人群结构可能会在临界阈值1附近使产生偏差,因此应谨慎地将EpiEstim应用于结构化人群的发病率数据。