Del Gaudio Costantino, Bianco Alessandra, Folin Marcella, Baiguera Silvia, Grigioni Mauro
Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma Tor Vergata, INSTM Research Unit Tor Vergata, Via della Ricerca Scientifica, Roma, Italy.
J Biomed Mater Res A. 2009 Jun 15;89(4):1028-39. doi: 10.1002/jbm.a.32048.
Electrospinning is a valuable technique to fabricate fibrous scaffolds for tissue engineering. The typical nonwoven architecture allows cell adhesion and proliferation, and supports diffusion of nutrients and waste products. Poly(epsilon-caprolactone) (PCL) electrospun membranes were produced starting from 14% w/v solutions in (a) mixture 1:1 tetrahydrofuran and N,N-dimethylformamide and (b) chloroform. Matrices made up of randomly arranged uniform fibers free of beads were obtained. The average fiber diameters were (a) 0.8 +/- 0.2 microm and (b) 3.6 +/- 0.8 microm. PCL matrices showed the following tensile mechanical properties: tensile modulus (a) 5.0 +/- 0.7 MPa (b) 6.4 +/- 0.2 MPa, yield stress (a) 0.55 +/- 0.06 MPa (b) 0.43 +/- 0.02 MPa, and ultimate tensile stress (a) 1.7 +/- 0.2 MPa and (b) 0.8 +/- 0.1 MPa. The ultimate strain ranged between 300% and 400%. Cytotoxicity of electrospun membranes was continuously evaluated by means of electric cell-substrate impedance sensing technique using human umbilical vein endothelial cells (HUVEC). PCL matrices resulted free of toxic amounts of contaminants and/or process by-products. In vitro studies performed by culturing HUVEC on micrometric and submicrometric fibrous mats showed that both structures supported cell adhesion and spreading. However, cells cultured on the micrometric network showed higher vitality and improved interaction with the polymeric fibers, suggesting an increased ability to promote cell colonization.
静电纺丝是一种用于制造组织工程纤维支架的重要技术。典型的非织造结构允许细胞粘附和增殖,并支持营养物质和代谢产物的扩散。聚(ε-己内酯)(PCL)静电纺丝膜由以下两种溶液制备:(a)四氢呋喃和N,N-二甲基甲酰胺1:1混合溶液,(b)氯仿,质量体积比均为14%。得到了由随机排列的无珠均匀纤维组成的基质。平均纤维直径分别为:(a)0.8±0.2微米,(b)3.6±0.8微米。PCL基质表现出以下拉伸力学性能:拉伸模量(a)5.0±0.7兆帕(b)6.4±0.2兆帕,屈服应力(a)0.55±0.06兆帕(b)0.43±0.02兆帕,极限拉伸应力(a)1.7±0.2兆帕和(b)0.8±0.1兆帕。极限应变在300%至400%之间。使用人脐静脉内皮细胞(HUVEC),通过细胞-基底阻抗传感技术持续评估静电纺丝膜的细胞毒性。PCL基质未检测到有毒量的污染物和/或加工副产物。通过在微米级和亚微米级纤维垫上培养HUVEC进行的体外研究表明,这两种结构都支持细胞粘附和铺展。然而,在微米级网络上培养的细胞显示出更高的活力以及与聚合物纤维更好的相互作用,这表明其促进细胞定植的能力增强。