Suppr超能文献

具有改良机械性能和生物学性能的杂交 PGS-PCL 微纤维支架。

Hybrid PGS-PCL microfibrous scaffolds with improved mechanical and biological properties.

机构信息

Center for Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA.

出版信息

J Tissue Eng Regen Med. 2011 Apr;5(4):283-91. doi: 10.1002/term.313.

Abstract

Poly(glycerol sebacate) (PGS) is a biodegradable elastomer that has generated great interest as a scaffold material due to its desirable mechanical properties. However, the use of PGS in tissue engineering is limited by difficulties in casting micro- and nanofibrous structures, due to high temperatures and vacuum required for its curing and limited solubility of the cured polymer. In this paper, we developed microfibrous scaffolds made from blends of PGS and poly(ε-caprolactone) (PCL) using a standard electrospinning set-up. At a given PGS:PCL ratio, higher voltage resulted in significantly smaller fibre diameters (reduced from ∼4 µm to 2.8 µm; p < 0.05). Further increase in voltage resulted in the fusion of fibres. Similarly, higher PGS concentrations in the polymer blend resulted in significantly increased fibre diameter (p < 0.01). We further compared the mechanical properties of electrospun PGS:PCL scaffolds with those made from PCL. Scaffolds with higher PGS concentrations showed higher elastic modulus (EM), ultimate tensile strength (UTS) and ultimate elongation (UE) (p < 0.01) without the need for thermal curing or photocrosslinking. Biological evaluation of these scaffolds showed significantly improved HUVEC attachment and proliferation compared to PCL-only scaffolds (p < 0.05). Thus, we have demonstrated that simple blends of PGS prepolymer with PCL can be used to fabricate microfibrous scaffolds with mechanical properties in the range of a human aortic valve leaflet.

摘要

聚(癸二酸甘油酯)(PGS)是一种可生物降解的弹性体,由于其理想的机械性能,作为支架材料引起了极大的兴趣。然而,由于其固化所需的高温和真空以及固化聚合物的溶解度有限,PGS 在组织工程中的应用受到限制。在本文中,我们使用标准的静电纺丝装置开发了由 PGS 和聚(ε-己内酯)(PCL)混合物制成的微纤维支架。在给定的 PGS:PCL 比例下,较高的电压会导致纤维直径显著减小(从约 4μm减小到 2.8μm;p<0.05)。进一步增加电压会导致纤维融合。同样,聚合物共混物中较高的 PGS 浓度会导致纤维直径显著增加(p<0.01)。我们进一步比较了静电纺丝 PGS:PCL 支架与 PCL 支架的机械性能。具有较高 PGS 浓度的支架表现出更高的弹性模量(EM)、拉伸强度(UTS)和伸长率(UE)(p<0.01),而无需热固化或光交联。这些支架的生物学评估表明,与仅含 PCL 的支架相比,HUVEC 附着和增殖明显改善(p<0.05)。因此,我们已经证明,PGS 预聚物与 PCL 的简单共混物可用于制造机械性能与人主动脉瓣叶相当的微纤维支架。

相似文献

1
Hybrid PGS-PCL microfibrous scaffolds with improved mechanical and biological properties.
J Tissue Eng Regen Med. 2011 Apr;5(4):283-91. doi: 10.1002/term.313.
3
4
Biomimetic poly(glycerol sebacate)/polycaprolactone blend scaffolds for cartilage tissue engineering.
J Mater Sci Mater Med. 2019 Apr 29;30(5):53. doi: 10.1007/s10856-019-6257-3.
5
Bioactive electrospun fibers of poly(glycerol sebacate) and poly(ε-caprolactone) for cardiac patch application.
Adv Healthc Mater. 2015 Sep 16;4(13):2012-25. doi: 10.1002/adhm.201500154. Epub 2015 Aug 13.
6
Fabrication and characterization of tough elastomeric fibrous scaffolds for tissue engineering applications.
Annu Int Conf IEEE Eng Med Biol Soc. 2010;2010:3546-8. doi: 10.1109/IEMBS.2010.5627486.
7
Biomimetic poly(glycerol sebacate)/poly(l-lactic acid) blend scaffolds for adipose tissue engineering.
Acta Biomater. 2015 May;18:40-9. doi: 10.1016/j.actbio.2015.03.004. Epub 2015 Mar 10.
8
Poly(ε-caprolactone)/poly(glycerol sebacate) electrospun scaffolds for cardiac tissue engineering using benign solvents.
Mater Sci Eng C Mater Biol Appl. 2019 Oct;103:109712. doi: 10.1016/j.msec.2019.04.091. Epub 2019 Apr 30.
9
Highly elastic and suturable electrospun poly(glycerol sebacate) fibrous scaffolds.
Acta Biomater. 2015 May;18:30-9. doi: 10.1016/j.actbio.2015.02.005. Epub 2015 Feb 14.

引用本文的文献

2
Mechanical Stimulation and Aligned Poly(ε-caprolactone)-Gelatin Electrospun Scaffolds Promote Skeletal Muscle Regeneration.
ACS Appl Bio Mater. 2024 Oct 21;7(10):6430-6440. doi: 10.1021/acsabm.4c00559. Epub 2024 Oct 4.
3
Recent advancements in polymeric heart valves: From basic research to clinical trials.
Mater Today Bio. 2024 Aug 10;28:101194. doi: 10.1016/j.mtbio.2024.101194. eCollection 2024 Oct.
4
Nonwoven Reinforced Photocurable Poly(glycerol sebacate)-Based Hydrogels.
Polymers (Basel). 2024 Mar 22;16(7):869. doi: 10.3390/polym16070869.
5
Strategies for Development of Synthetic Heart Valve Tissue Engineering Scaffolds.
Prog Mater Sci. 2023 Oct;139. doi: 10.1016/j.pmatsci.2023.101173. Epub 2023 Jul 26.
6
Elastomeric Polyesters in Cardiovascular Tissue Engineering and Organs-on-a-Chip.
Biomacromolecules. 2023 Nov 13;24(11):4511-4531. doi: 10.1021/acs.biomac.3c00387. Epub 2023 Aug 28.
9
Fibrous heart valve leaflet substrate with native-mimicked morphology.
Appl Mater Today. 2021 Sep;24. doi: 10.1016/j.apmt.2021.101112. Epub 2021 Jul 23.
10
Poly(Glycerol Sebacate) in Biomedical Applications-A Review of the Recent Literature.
Adv Healthc Mater. 2021 May;10(9):e2002026. doi: 10.1002/adhm.202002026. Epub 2021 Mar 17.

本文引用的文献

2
Putting Electrospun Nanofibers to Work for Biomedical Research.
Macromol Rapid Commun. 2008 Nov 19;29(22):1775-1792. doi: 10.1002/marc.200800381.
3
Applications of microscale technologies for regenerative dentistry.
J Dent Res. 2009 May;88(5):409-21. doi: 10.1177/0022034509334774.
4
Progress in tissue engineering.
Sci Am. 2009 May;300(5):64-71. doi: 10.1038/scientificamerican0509-64.
5
Bioengineering challenges for heart valve tissue engineering.
Annu Rev Biomed Eng. 2009;11:289-313. doi: 10.1146/annurev-bioeng-061008-124903.
6
Engineering retinal progenitor cell and scrollable poly(glycerol-sebacate) composites for expansion and subretinal transplantation.
Biomaterials. 2009 Jul;30(20):3405-14. doi: 10.1016/j.biomaterials.2009.02.046. Epub 2009 Apr 9.
7
Controlled cellular orientation on PLGA microfibers with defined diameters.
Biomed Microdevices. 2009 Aug;11(4):739-46. doi: 10.1007/s10544-009-9287-7.
8
10
Accordion-like honeycombs for tissue engineering of cardiac anisotropy.
Nat Mater. 2008 Dec;7(12):1003-10. doi: 10.1038/nmat2316. Epub 2008 Nov 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验