Zemel Assaf, Ben-Shaul Avinoam, May Sylvio
Department of Physical Chemistry and the Fritz Haber Research Center, The Hebrew University, Jerusalem, Israel.
J Phys Chem B. 2008 Jun 12;112(23):6988-96. doi: 10.1021/jp711107y. Epub 2008 May 14.
Amphipathic alpha-helical peptides are often ascribed an ability to induce curvature stress in lipid membranes. This may lead directly to a bending deformation of the host membrane, or it may promote the formation of defects that involve highly curved lipid layers present in membrane pores, fusion intermediates, and solubilized peptide-micelle complexes. The driving force is the same in all cases: peptides induce a spontaneous curvature in the host lipid layer, the sign of which depends sensitively on the peptide's structural properties. We provide a quantitative account for this observation on the basis of a molecular-level method. To this end, we consider a lipid membrane with peptides interfacially adsorbed onto one leaflet at high peptide-to-lipid ratio. The peptides are modeled generically as rigid cylinders that interact with the host membrane through a perturbation of the conformational properties of the lipid chains. Through the use of a molecular-level chain packing theory, we calculate the elastic properties, that is, the spontaneous curvature and bending stiffness, of the peptide-decorated lipid membrane as a function of the peptide's insertion depth. We find a positive spontaneous curvature (preferred bending of the membrane away from the peptide) for small penetration depths of the peptide. At a penetration depth roughly equal to half-insertion into the hydrocarbon core, the spontaneous curvature changes sign, implying negative spontaneous curvature (preferred bending of the membrane toward the peptide) for large penetration depths. Despite thinning of the membrane upon peptide insertion, we find an increase in the bending stiffness. We discuss these findings in terms of how the peptide induces elastic stress.
两亲性α-螺旋肽通常被认为具有在脂质膜中诱导曲率应力的能力。这可能直接导致宿主膜的弯曲变形,或者促进缺陷的形成,这些缺陷涉及存在于膜孔、融合中间体和溶解的肽-胶束复合物中的高度弯曲的脂质层。在所有情况下驱动力都是相同的:肽在宿主脂质层中诱导自发曲率,其符号敏感地取决于肽的结构特性。我们基于分子水平方法对这一观察结果进行了定量解释。为此,我们考虑一种脂质膜,其中肽以高肽-脂比界面吸附在一个小叶上。肽被一般地建模为刚性圆柱体,它们通过扰动脂质链的构象性质与宿主膜相互作用。通过使用分子水平的链堆积理论,我们计算了肽修饰的脂质膜的弹性性质,即自发曲率和弯曲刚度,作为肽插入深度的函数。我们发现,对于肽的小穿透深度,自发曲率为正(膜倾向于远离肽弯曲)。在穿透深度大致等于烃核半插入深度时,自发曲率改变符号,这意味着对于大穿透深度,自发曲率为负(膜倾向于朝向肽弯曲)。尽管肽插入时膜会变薄,但我们发现弯曲刚度增加。我们根据肽如何诱导弹性应力来讨论这些发现。