Centler Florian, Kaleta Christoph, di Fenizio Pietro Speroni, Dittrich Peter
Bio Systems Analysis Group, Jena Centre for Bioinformatics (JCB) and Department of Mathematics and Computer Science, Friedrich-Schiller-University Jena, D-07743 Jena, Germany.
Bioinformatics. 2008 Jul 15;24(14):1611-8. doi: 10.1093/bioinformatics/btn228. Epub 2008 May 14.
Novel techniques are required to analyze computational models of intracellular processes as they increase steadily in size and complexity. The theory of chemical organizations has recently been introduced as such a technique that links the topology of biochemical reaction network models to their dynamical repertoire. The network is decomposed into algebraically closed and self-maintaining subnetworks called organizations. They form a hierarchy representing all feasible system states including all steady states.
We present three algorithms to compute the hierarchy of organizations for network models provided in SBML format. Two of them compute the complete organization hierarchy, while the third one uses heuristics to obtain a subset of all organizations for large models. While the constructive approach computes the hierarchy starting from the smallest organization in a bottom-up fashion, the flux-based approach employs self-maintaining flux distributions to determine organizations. A runtime comparison on 16 different network models of natural systems showed that none of the two exhaustive algorithms is superior in all cases. Studying a 'genome-scale' network model with 762 species and 1193 reactions, we demonstrate how the organization hierarchy helps to uncover the model structure and allows to evaluate the model's quality, for example by detecting components and subsystems of the model whose maintenance is not explained by the model.
All data and a Java implementation that plugs into the Systems Biology Workbench is available from http://www.minet.uni-jena.de/csb/prj/ot/tools.
随着细胞内过程计算模型的规模和复杂性不断增加,需要新的技术来对其进行分析。化学组织理论最近作为一种将生化反应网络模型的拓扑结构与其动态特性联系起来的技术被引入。该网络被分解为代数封闭且自我维持的子网,称为组织。它们形成一个层次结构,代表所有可行的系统状态,包括所有稳态。
我们提出了三种算法来计算以SBML格式提供的网络模型的组织层次结构。其中两种算法计算完整的组织层次结构,而第三种算法使用启发式方法来获取大型模型的所有组织的子集。构造性方法以自下而上的方式从最小的组织开始计算层次结构,而基于通量的方法使用自我维持的通量分布来确定组织。对16个不同自然系统网络模型的运行时比较表明,两种穷举算法在所有情况下都不具有优势。通过研究一个具有762个物种和1193个反应的“基因组规模”网络模型,我们展示了组织层次结构如何有助于揭示模型结构,并允许评估模型的质量,例如通过检测模型中那些其维持无法由模型解释的组件和子系统。
所有数据以及一个可插入系统生物学工作台的Java实现可从http://www.minet.uni-jena.de/csb/prj/ot/tools获取。