Suppr超能文献

HOG丝裂原活化蛋白激酶途径的信号转导

Signal processing by the HOG MAP kinase pathway.

作者信息

Hersen Pascal, McClean Megan N, Mahadevan L, Ramanathan Sharad

机构信息

FAS Center for Systems Biology and School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.

出版信息

Proc Natl Acad Sci U S A. 2008 May 20;105(20):7165-70. doi: 10.1073/pnas.0710770105. Epub 2008 May 14.

Abstract

Signaling pathways relay information about changes in the external environment so that cells can respond appropriately. How much information a pathway can carry depends on its bandwidth. We designed a microfluidic device to reliably change the environment of single cells over a range of frequencies. Using this device, we measured the bandwidth of the Saccharomyces cerevisiae signaling pathway that responds to high osmolarity. This prototypical pathway, the HOG pathway, is shown to act as a low-pass filter, integrating the signal when it changes rapidly and following it faithfully when it changes more slowly. We study the dependence of the pathway's bandwidth on its architecture. We measure previously unknown bounds on all of the in vivo reaction rates acting in this pathway. We find that the two-component Ssk1 branch of this pathway is capable of fast signal integration, whereas the kinase Ste11 branch is not. Our experimental techniques can be applied to other signaling pathways, allowing the measurement of their in vivo kinetics and the quantification of their information capacity.

摘要

信号通路传递有关外部环境变化的信息,以便细胞能够做出适当反应。一条通路能够携带的信息量取决于其带宽。我们设计了一种微流控装置,以在一系列频率范围内可靠地改变单细胞的环境。使用该装置,我们测量了酿酒酵母对高渗透压作出反应的信号通路的带宽。这条典型的通路,即高渗甘油(HOG)通路,被证明起到低通滤波器的作用,在信号快速变化时对其进行整合,并在信号变化较慢时忠实地跟踪它。我们研究了该通路带宽对其架构的依赖性。我们测量了该通路中所有体内反应速率的先前未知界限。我们发现该通路的双组分Ssk1分支能够快速进行信号整合,而激酶Ste11分支则不能。我们的实验技术可应用于其他信号通路,从而能够测量它们的体内动力学并量化其信息容量。

相似文献

1
Signal processing by the HOG MAP kinase pathway.HOG丝裂原活化蛋白激酶途径的信号转导
Proc Natl Acad Sci U S A. 2008 May 20;105(20):7165-70. doi: 10.1073/pnas.0710770105. Epub 2008 May 14.
3
In vivo measurement of signaling cascade dynamics.信号级联动力学的体内测量。
Cell Cycle. 2009 Feb 1;8(3):373-6. doi: 10.4161/cc.8.3.7450. Epub 2009 Feb 17.

引用本文的文献

2
Quantifying the nuclear localization of fluorescently tagged proteins.量化荧光标记蛋白的核定位
Bioinform Adv. 2025 May 12;5(1):vbaf114. doi: 10.1093/bioadv/vbaf114. eCollection 2025.
3
6
Live cell microscopy: From image to insight.活细胞显微镜检查:从图像到洞察。
Biophys Rev (Melville). 2022 Apr 21;3(2):021302. doi: 10.1063/5.0082799. eCollection 2022 Jun.
7
Adapting to ever-changing conditions.适应不断变化的条件。
Elife. 2024 Feb 28;13:e91717. doi: 10.7554/eLife.91717.

本文引用的文献

2
Sensing the environment: lessons from fungi.感知环境:来自真菌的经验教训。
Nat Rev Microbiol. 2007 Jan;5(1):57-69. doi: 10.1038/nrmicro1578.
4
Comparative genomics of the HOG-signalling system in fungi.真菌中HOG信号系统的比较基因组学
Curr Genet. 2006 Mar;49(3):137-51. doi: 10.1007/s00294-005-0038-x. Epub 2006 Feb 9.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验