Suppr超能文献

Sln1-Ypd1-Ssk1三组分磷酸化信号转导通路的稳健网络结构可防止酿酒酵母中HOG MAPK通路的意外激活。

Robust network structure of the Sln1-Ypd1-Ssk1 three-component phospho-relay prevents unintended activation of the HOG MAPK pathway in Saccharomyces cerevisiae.

作者信息

Dexter Joseph P, Xu Ping, Gunawardena Jeremy, McClean Megan N

机构信息

Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA.

Department of Chemistry, Princeton University, Princeton, NJ, USA.

出版信息

BMC Syst Biol. 2015 Mar 25;9:17. doi: 10.1186/s12918-015-0158-y.

Abstract

BACKGROUND

The yeast Saccharomyces cerevisiae relies on the high-osmolarity glycerol (HOG) signaling pathway to respond to increases in external osmolarity. The HOG pathway is rapidly activated under conditions of elevated osmolarity and regulates transcriptional and metabolic changes within the cell. Under normal growth conditions, however, a three-component phospho-relay consisting of the histidine kinase Sln1, the transfer protein Ypd1, and the response regulator Ssk1 represses HOG pathway activity by phosphorylation of Ssk1. This inhibition of the HOG pathway is essential for cellular fitness in normal osmolarity. Nevertheless, the extent to and mechanisms by which inhibition is robust to fluctuations in the concentrations of the phospho-relay components has received little attention.

RESULTS

We established that the Sln1-Ypd1-Ssk1 phospho-relay is robust-it is able to maintain inhibition of the HOG pathway even after significant changes in the levels of its three components. We then developed a biochemically realistic mathematical model of the phospho-relay, which suggested that robustness is due to buffering by a large excess pool of Ypd1. We confirmed experimentally that depletion of the Ypd1 pool results in inappropriate activation of the HOG pathway.

CONCLUSIONS

We identified buffering by an intermediate component in excess as a novel mechanism through which a phospho-relay can achieve robustness. This buffering requires multiple components and is therefore unavailable to two-component systems, suggesting one important advantage of multi-component relays.

摘要

背景

酿酒酵母依靠高渗甘油(HOG)信号通路来应对外部渗透压的升高。HOG通路在渗透压升高的条件下会迅速被激活,并调节细胞内的转录和代谢变化。然而,在正常生长条件下,由组氨酸激酶Sln1、传递蛋白Ypd1和应答调节因子Ssk1组成的三元磷酸化信号转导途径通过对Ssk1的磷酸化来抑制HOG通路的活性。这种对HOG通路的抑制对于正常渗透压下的细胞适应性至关重要。尽管如此,这种抑制对磷酸化信号转导途径各组分浓度波动的稳健程度及机制却很少受到关注。

结果

我们证实Sln1-Ypd1-Ssk1磷酸化信号转导途径具有稳健性——即使其三个组分的水平发生显著变化,它仍能维持对HOG通路的抑制。然后,我们建立了一个该磷酸化信号转导途径的生化逼真数学模型,该模型表明其稳健性源于大量过量的Ypd1的缓冲作用。我们通过实验证实,Ypd1库的耗尽会导致HOG通路的不适当激活。

结论

我们确定过量中间组分的缓冲作用是磷酸化信号转导途径实现稳健性的一种新机制。这种缓冲作用需要多个组分,因此双组分系统无法实现,这表明了多组分信号转导途径的一个重要优势。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ce3/4377207/a39ce2e46727/12918_2015_158_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验