Suppr超能文献

广域(多须)感觉反应的皮质转化

Cortical transformation of wide-field (multiwhisker) sensory responses.

作者信息

Hirata Akio, Castro-Alamancos Manuel A

机构信息

Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania 19129, USA.

出版信息

J Neurophysiol. 2008 Jul;100(1):358-70. doi: 10.1152/jn.90538.2008. Epub 2008 May 14.

Abstract

In the barrel cortex of rodents, cells respond to a principal whisker (PW) and more weakly to several adjacent whiskers (AWs). Here we show that compared with PW responses, simultaneous wide-field stimulation of the PW and several AWs enhances short-latency responses and suppresses long-latency responses. Multiwhisker enhancement and suppression is first seen at the level of the cortex in layer 4 and not in the ventroposterior medial thalamus. Within the cortex, enhancement is manifested as a reduction in spike latency in layer 4 but also as an increase in spike probability in layer 2/3. Intracellular recordings revealed that multiwhisker enhancement of short-latency responses is caused by synaptic summation that can be explained by synaptic cooperativity (i.e., convergence of synaptic inputs activated by different whiskers). Conversely, multiwhisker suppression of long-latency responses is due to increased recruitment of inhibition in cortical cells. Interestingly, the ability to differentiate multiwhisker and PW responses is lost during rapid sensory adaptation caused by high-frequency whisker stimulation. The results reveal that simultaneous and temporally dispersed wide-field sensory inputs are discriminated at the level of single cells in barrel cortex with high temporal resolution, but the ability to compute this difference is highly dynamic and dependent on the level of adaptation in the thalamocortical network.

摘要

在啮齿动物的桶状皮层中,细胞对主要触须(PW)有反应,而对几根相邻触须(AWs)的反应较弱。我们在此表明,与PW反应相比,同时对PW和几根AWs进行宽视野刺激会增强短潜伏期反应并抑制长潜伏期反应。多触须增强和抑制首先出现在第4层的皮层水平,而不是腹后内侧丘脑。在皮层内,增强表现为第4层的峰潜伏期缩短,也表现为第2/3层的峰概率增加。细胞内记录显示,短潜伏期反应的多触须增强是由突触总和引起的,这可以用突触协同作用(即由不同触须激活的突触输入的汇聚)来解释。相反,长潜伏期反应的多触须抑制是由于皮层细胞中抑制作用的募集增加。有趣的是,在高频触须刺激引起的快速感觉适应过程中,区分多触须和PW反应的能力丧失了。结果表明,同时且在时间上分散的宽视野感觉输入在桶状皮层的单细胞水平上以高时间分辨率被区分,但计算这种差异的能力是高度动态的,并且依赖于丘脑皮质网络的适应水平。

相似文献

1
Cortical transformation of wide-field (multiwhisker) sensory responses.
J Neurophysiol. 2008 Jul;100(1):358-70. doi: 10.1152/jn.90538.2008. Epub 2008 May 14.
2
Whisker row deprivation affects the flow of sensory information through rat barrel cortex.
J Neurophysiol. 2017 Jan 1;117(1):4-17. doi: 10.1152/jn.00289.2016. Epub 2016 Oct 5.
3
Nonlinear integration of sensory responses in the rat barrel cortex: an intracellular study in vivo.
J Neurosci. 2003 Nov 12;23(32):10190-200. doi: 10.1523/JNEUROSCI.23-32-10190.2003.
4
Chronic suppression of activity in barrel field cortex downregulates sensory responses in contralateral barrel field cortex.
J Neurophysiol. 2005 Nov;94(5):3342-56. doi: 10.1152/jn.00357.2005. Epub 2005 Jul 13.
5
Physiological and anatomical organization of multiwhisker response interactions in the barrel cortex of rats.
J Neurosci. 2000 Aug 15;20(16):6241-8. doi: 10.1523/JNEUROSCI.20-16-06241.2000.
6
Intrinsic firing patterns and whisker-evoked synaptic responses of neurons in the rat barrel cortex.
J Neurophysiol. 1999 Mar;81(3):1171-83. doi: 10.1152/jn.1999.81.3.1171.
7
Response properties of whisker-associated trigeminothalamic neurons in rat nucleus principalis.
J Neurophysiol. 2003 Jan;89(1):40-56. doi: 10.1152/jn.00272.2002.
8
Spatiotemporal characteristics of neuronal sensory integration in the barrel cortex of the rat.
J Neurophysiol. 2005 Mar;93(3):1450-67. doi: 10.1152/jn.00912.2004. Epub 2004 Oct 20.
9
High-velocity stimulation evokes "dense" population response in layer 2/3 vibrissal cortex.
J Neurophysiol. 2017 Mar 1;117(3):1218-1228. doi: 10.1152/jn.00815.2016. Epub 2016 Dec 21.
10
Thalamocortical conduction times and stimulus-evoked responses in the rat whisker-to-barrel system.
J Neurophysiol. 2007 Nov;98(5):2842-7. doi: 10.1152/jn.00800.2007. Epub 2007 Sep 5.

引用本文的文献

1
Vibrissal thalamic modes.
Scholarpedia J. 2010;5(7). doi: 10.4249/scholarpedia.7278.
3
Astrocytes modulate sensory-evoked neuronal network activity.
Nat Commun. 2020 Jul 23;11(1):3689. doi: 10.1038/s41467-020-17536-3.
4
Organization of sensory feature selectivity in the whisker system.
Neuroscience. 2018 Jan 1;368:70-80. doi: 10.1016/j.neuroscience.2017.09.014. Epub 2017 Sep 14.
5
Surround Integration Organizes a Spatial Map during Active Sensation.
Neuron. 2017 Jun 21;94(6):1220-1233.e5. doi: 10.1016/j.neuron.2017.04.026. Epub 2017 May 11.
7
Neuromodulators produce distinct activated states in neocortex.
J Neurosci. 2014 Sep 10;34(37):12353-67. doi: 10.1523/JNEUROSCI.1858-14.2014.
8
Spatiotemporal receptive fields of barrel cortex revealed by reverse correlation of synaptic input.
Nat Neurosci. 2014 Jun;17(6):866-75. doi: 10.1038/nn.3720. Epub 2014 May 18.
9
Optogenetic patterning of whisker-barrel cortical system in transgenic rat expressing channelrhodopsin-2.
PLoS One. 2014 Apr 2;9(4):e93706. doi: 10.1371/journal.pone.0093706. eCollection 2014.
10
Millisecond, micron precision multi-whisker detector.
PLoS One. 2013 Sep 2;8(9):e73357. doi: 10.1371/journal.pone.0073357. eCollection 2013.

本文引用的文献

1
Barrel cortex and whisker-mediated behaviors.
Curr Opin Neurobiol. 2007 Aug;17(4):408-16. doi: 10.1016/j.conb.2007.07.008. Epub 2007 Aug 15.
3
Supralinear increase of recurrent inhibition during sparse activity in the somatosensory cortex.
Nat Neurosci. 2007 Jun;10(6):743-53. doi: 10.1038/nn1909. Epub 2007 May 21.
4
Cross-whisker adaptation of neurons in the rat barrel cortex.
J Neurosci. 2006 Dec 20;26(51):13363-72. doi: 10.1523/JNEUROSCI.4056-06.2006.
5
Active sensation: insights from the rodent vibrissa sensorimotor system.
Curr Opin Neurobiol. 2006 Aug;16(4):435-44. doi: 10.1016/j.conb.2006.06.009. Epub 2006 Jul 11.
6
Cortex is driven by weak but synchronously active thalamocortical synapses.
Science. 2006 Jun 16;312(5780):1622-7. doi: 10.1126/science.1124593.
7
Noradrenergic activation amplifies bottom-up and top-down signal-to-noise ratios in sensory thalamus.
J Neurosci. 2006 Apr 19;26(16):4426-36. doi: 10.1523/JNEUROSCI.5298-05.2006.
9
Balanced excitation and inhibition determine spike timing during frequency adaptation.
J Neurosci. 2006 Jan 11;26(2):448-57. doi: 10.1523/JNEUROSCI.3506-05.2006.
10
Spatiotemporal gating of sensory inputs in thalamus during quiescent and activated states.
J Neurosci. 2005 Nov 23;25(47):10990-1002. doi: 10.1523/JNEUROSCI.3229-05.2005.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验