Biophysics Graduate Group, Berkeley, United States.
Department of Molecular and Cell Biology, Berkeley, United States.
Elife. 2021 Nov 1;10:e62687. doi: 10.7554/eLife.62687.
How cortical circuits build representations of complex objects is poorly understood. Individual neurons must integrate broadly over space, yet simultaneously obtain sharp tuning to specific global stimulus features. Groups of neurons identifying different global features must then assemble into a population that forms a comprehensive code for these global stimulus properties. Although the logic for how single neurons summate over their spatial inputs has been well explored in anesthetized animals, how large groups of neurons compose a flexible population code of higher-order features in awake animals is not known. To address this question, we probed the integration and population coding of higher-order stimuli in the somatosensory and visual cortices of awake mice using two-photon calcium imaging across cortical layers. We developed a novel tactile stimulator that allowed the precise measurement of spatial summation even in actively whisking mice. Using this system, we found a sparse but comprehensive population code for higher-order tactile features that depends on a heterogeneous and neuron-specific logic of spatial summation beyond the receptive field. Different somatosensory cortical neurons summed specific combinations of sensory inputs supra-linearly, but integrated other inputs sub-linearly, leading to selective responses to higher-order features. Visual cortical populations employed a nearly identical scheme to generate a comprehensive population code for contextual stimuli. These results suggest that a heterogeneous logic of input-specific supra-linear summation may represent a widespread cortical mechanism for the synthesis of sparse higher-order feature codes in neural populations. This may explain how the brain exploits the thalamocortical expansion of dimensionality to encode arbitrary complex features of sensory stimuli.
皮质回路如何构建复杂对象的表示形式还不太清楚。单个神经元必须在广泛的空间上进行整合,但同时又要对特定的全局刺激特征进行精确调谐。然后,识别不同全局特征的神经元组必须组装成一个群体,为这些全局刺激属性形成一个综合代码。虽然在麻醉动物中已经很好地研究了单个神经元如何在其空间输入上进行求和的逻辑,但在清醒动物中,大量神经元如何组成高级特征的灵活群体代码尚不清楚。为了解决这个问题,我们使用双光子钙成像技术在清醒小鼠的体感和视觉皮层中探测高级刺激的整合和群体编码。我们开发了一种新型的触觉刺激器,即使在主动刷动的小鼠中也能精确测量空间求和。使用这个系统,我们发现了一种稀疏但全面的高级触觉特征的群体代码,这种代码依赖于超越感受野的空间求和的异质和神经元特异性逻辑。不同的体感皮层神经元超线性地总和特定的感觉输入组合,但对其他输入进行亚线性整合,从而对高级特征产生选择性反应。视觉皮层群体采用几乎相同的方案来生成上下文刺激的综合群体代码。这些结果表明,输入特异性超线性求和的异质逻辑可能是神经群体中稀疏高级特征代码合成的一种普遍皮质机制。这可以解释大脑如何利用丘脑皮质维度的扩展来编码感觉刺激的任意复杂特征。