Suppr超能文献

乳腺肿瘤中雌激素受体α与p53相互作用的破坏:放射治疗抗肿瘤作用的一种新机制。

Disruption of estrogen receptor alpha-p53 interaction in breast tumors: a novel mechanism underlying the anti-tumor effect of radiation therapy.

作者信息

Liu Wensheng, Ip Margot M, Podgorsak Matthew B, Das Gokul M

机构信息

Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA.

出版信息

Breast Cancer Res Treat. 2009 May;115(1):43-50. doi: 10.1007/s10549-008-0044-z. Epub 2008 May 15.

Abstract

Inactivation of tumor suppressor p53 is one of the most frequent events in cancer. Unlike many other cancers, however, p53 gene mutations are infrequent in breast cancers, as about 80% of breast tumors contain wild type p53. The mechanisms underlying functional inactivation of wild type p53 in breast cancer have remained elusive. Besides, how p53 gets activated in breast tumors subjected to radiation therapy remains unknown. We recently reported that in MCF-7 breast cancer cells, estrogen receptor alpha (ERalpha) directly binds to p53 and represses its function. Furthermore, the ERalpha-p53 interaction was disrupted by ionizing radiation. These observations have important translational implications especially as there are no reliable cellular or molecular criteria for rational radiotherapy for breast cancer. Here we report our studies towards addressing this important issue, using an MCF-7 breast cancer xenograft model in mice. Radiation effectively inhibits growth of these tumors and stabilizes p53, but has no observable effect on ERalpha protein level. Importantly, chromatin immunoprecipitation (ChIP) assays demonstrated that ERalpha interacts with p53 bound to endogenous target gene promoters in tumors in vivo, and this interaction is considerably reduced in response to radiotherapy although p53 level is increased. Concomitant with its effect on ERalpha-p53 interaction, radiation increases p53-mediated transcriptional activation of several target genes and increases p53-mediated transcriptional repression of survivin. Our studies show that disruption of ERalpha-p53 interaction in vivo resulting in restoration of functional p53 is a cellular response to radiation. Radiation could be affecting ERalpha and/or p53 directly or it could be influencing other proteins associated with the ERalpha-p53 complex. To the best of our knowledge, this is the first report on analysis of DNA-protein-protein interaction occurring on endogenous gene promoters in vivo in breast tumor tissues. These findings suggest that alleviating the inhibitory effect of ERalpha on p53 could be one of the molecular mechanisms underlying activation of p53 by radiation in breast tumors, and therefore, could be exploited to develop more effective ways of combining radiation therapy with systemic therapies such as hormonal therapy and chemotherapy.

摘要

肿瘤抑制因子p53的失活是癌症中最常见的事件之一。然而,与许多其他癌症不同,p53基因突变在乳腺癌中并不常见,因为约80%的乳腺肿瘤含有野生型p53。乳腺癌中野生型p53功能失活的潜在机制仍然不清楚。此外,在接受放射治疗的乳腺肿瘤中p53如何被激活仍然未知。我们最近报道,在MCF-7乳腺癌细胞中,雌激素受体α(ERα)直接与p53结合并抑制其功能。此外,电离辐射破坏了ERα与p53的相互作用。这些观察结果具有重要的转化意义,特别是因为目前尚无用于乳腺癌合理放射治疗的可靠细胞或分子标准。在此,我们报告我们使用小鼠MCF-7乳腺癌异种移植模型解决这一重要问题的研究。放射有效地抑制了这些肿瘤的生长并使p53稳定,但对ERα蛋白水平没有可观察到的影响。重要的是,染色质免疫沉淀(ChIP)分析表明,ERα与体内肿瘤中与内源性靶基因启动子结合的p53相互作用,并且尽管p53水平升高,但这种相互作用在放射治疗后显著降低。伴随着其对ERα-p53相互作用的影响,放射增加了p53介导的几个靶基因的转录激活,并增加了p53介导的存活素转录抑制。我们的研究表明,体内ERα-p53相互作用的破坏导致功能性p53的恢复是细胞对放射的反应。放射可能直接影响ERα和/或p53,或者它可能影响与ERα-p53复合物相关的其他蛋白质。据我们所知,这是关于分析乳腺肿瘤组织体内内源性基因启动子上发生的DNA-蛋白质-蛋白质相互作用的第一份报告。这些发现表明,减轻ERα对p53的抑制作用可能是乳腺肿瘤中放射激活p53的分子机制之一,因此,可以利用这一点开发更有效的方法将放射治疗与激素治疗和化疗等全身治疗相结合。

相似文献

1
Disruption of estrogen receptor alpha-p53 interaction in breast tumors: a novel mechanism underlying the anti-tumor effect of radiation therapy.
Breast Cancer Res Treat. 2009 May;115(1):43-50. doi: 10.1007/s10549-008-0044-z. Epub 2008 May 15.
3
Mechanisms of estrogen receptor antagonism toward p53 and its implications in breast cancer therapeutic response and stem cell regulation.
Proc Natl Acad Sci U S A. 2010 Aug 24;107(34):15081-6. doi: 10.1073/pnas.1009575107. Epub 2010 Aug 9.
4
Estrogen receptor-alpha binds p53 tumor suppressor protein directly and represses its function.
J Biol Chem. 2006 Apr 14;281(15):9837-40. doi: 10.1074/jbc.C600001200. Epub 2006 Feb 9.
5
7
The proteasome inhibitor Bortezomib (Velcade) as potential inhibitor of estrogen receptor-positive breast cancer.
Int J Cancer. 2015 Aug 1;137(3):686-97. doi: 10.1002/ijc.29404. Epub 2015 Jan 8.
8
The G protein-coupled receptor GPR30 inhibits proliferation of estrogen receptor-positive breast cancer cells.
Cancer Res. 2010 Feb 1;70(3):1184-94. doi: 10.1158/0008-5472.CAN-09-3068. Epub 2010 Jan 19.
9
KLF4 suppresses estrogen-dependent breast cancer growth by inhibiting the transcriptional activity of ERalpha.
Oncogene. 2009 Aug 13;28(32):2894-902. doi: 10.1038/onc.2009.151. Epub 2009 Jun 8.
10

引用本文的文献

1
Interaction between Estrogen Receptors and p53: A Broader Role for Tamoxifen?
Endocrinology. 2025 Feb 5;166(3). doi: 10.1210/endocr/bqaf020.
2
ESR1 and p53 interactome alteration defines mechanisms of tamoxifen response in luminal breast cancer.
iScience. 2024 May 15;27(6):109995. doi: 10.1016/j.isci.2024.109995. eCollection 2024 Jun 21.
3
Food-seeking behavior is triggered by skin ultraviolet exposure in males.
Nat Metab. 2022 Jul;4(7):883-900. doi: 10.1038/s42255-022-00587-9. Epub 2022 Jul 11.
4
ERα determines the chemo-resistant function of mutant p53 involving the switch between lincRNA-p21 and DDB2 expressions.
Mol Ther Nucleic Acids. 2021 Aug 8;25:536-553. doi: 10.1016/j.omtn.2021.07.022. eCollection 2021 Sep 3.
5
Estrogen Receptor-Alpha and p53 Status as Regulators of AMPK and mTOR in Luminal Breast Cancer.
Cancers (Basel). 2021 Jul 19;13(14):3612. doi: 10.3390/cancers13143612.
7
Emerging roles of aerobic glycolysis in breast cancer.
Clin Transl Oncol. 2020 May;22(5):631-646. doi: 10.1007/s12094-019-02187-8. Epub 2019 Jul 29.
9
Decoding the link between WWOX and p53 in aggressive breast cancer.
Cell Cycle. 2019 Jun;18(11):1177-1186. doi: 10.1080/15384101.2019.1616998. Epub 2019 May 16.
10
TP53 Status as a Determinant of Pro- vs Anti-Tumorigenic Effects of Estrogen Receptor-Beta in Breast Cancer.
J Natl Cancer Inst. 2019 Nov 1;111(11):1202-1215. doi: 10.1093/jnci/djz051.

本文引用的文献

2
3
p53 in health and disease.
Nat Rev Mol Cell Biol. 2007 Apr;8(4):275-83. doi: 10.1038/nrm2147.
4
Wild-type p53: tumors can't stand it.
Cell. 2007 Mar 9;128(5):837-40. doi: 10.1016/j.cell.2007.02.022.
5
Targeting survivin in cancer therapy: fulfilled promises and open questions.
Carcinogenesis. 2007 Jun;28(6):1133-9. doi: 10.1093/carcin/bgm047. Epub 2007 Mar 6.
6
Restoration of wild-type p53 function in human cancer: relevance for tumor therapy.
Head Neck. 2007 Mar;29(3):272-84. doi: 10.1002/hed.20529.
9
Down-regulation of inhibitor of apoptosis proteins by deguelin selectively induces apoptosis in breast cancer cells.
Mol Pharmacol. 2007 Jan;71(1):101-11. doi: 10.1124/mol.106.027367. Epub 2006 Oct 11.
10
Down-regulation of survivin by ultraviolet C radiation is dependent on p53 and results in G(2)-M arrest in A549 cells.
Cancer Lett. 2007 Apr 18;248(2):292-8. doi: 10.1016/j.canlet.2006.08.005. Epub 2006 Sep 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验