Department of Zoology, Sri Venkateswara University, Tirupati 517502, India.
Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29208, USA.
Int J Mol Sci. 2019 Jun 18;20(12):2962. doi: 10.3390/ijms20122962.
Breast cancer is a leading cancer type and one of the major health issues faced by women around the world. Some of its major risk factors include body mass index, hormone replacement therapy, family history and germline mutations. Of these risk factors, estrogen levels play a crucial role. Among the estrogen receptors, estrogen receptor alpha (ERα) is known to interact with tumor suppressor protein p53 directly thereby repressing its function. Previously, we have studied the impact of deleterious breast cancer-associated non-synonymous single nucleotide polymorphisms (nsnps) rs11540654 (R110P), rs17849781 (P278A) and rs28934874 (P151T) in gene on the p53 DNA-binding core domain. In the present study, we aimed to analyze the impact of these mutations on p53-ERα interaction. To this end, we, have modelled the full-length structure of human p53 and validated its quality using PROCHECK and subjected it to energy minimization using NOMAD-Ref web server. Three-dimensional structure of ERα activation function-2 (AF-2) domain was downloaded from the protein data bank. Interactions between the modelled native and mutant (R110P, P278A, P151T) p53 with ERα was studied using ZDOCK. Machine learning predictions on the interactions were performed using Weka software. Results from the protein-protein docking showed that the atoms, residues and solvent accessibility surface area (SASA) at the interface was increased in both p53 and ERα for R110P mutation compared to the native complexes indicating that the mutation R110P has more impact on the p53-ERα interaction compared to the other two mutants. Mutations P151T and P278A, on the other hand, showed a large deviation from the native p53-ERα complex in atoms and residues at the surface. Further, results from artificial neural network analysis showed that these structural features are important for predicting the impact of these three mutations on p53-ERα interaction. Overall, these three mutations showed a large deviation in total SASA in both p53 and ERα. In conclusion, results from our study will be crucial in making the decisions for hormone-based therapies against breast cancer.
乳腺癌是一种主要的癌症类型,也是全球女性面临的主要健康问题之一。其主要危险因素包括体重指数、激素替代疗法、家族史和种系突变。在这些危险因素中,雌激素水平起着至关重要的作用。在雌激素受体中,雌激素受体α(ERα)被发现与肿瘤抑制蛋白 p53 直接相互作用,从而抑制其功能。此前,我们研究了乳腺癌相关非同义单核苷酸多态性(nsnps)rs11540654(R110P)、rs17849781(P278A)和 rs28934874(P151T)在 基因对 p53 DNA 结合核心结构域的影响。在本研究中,我们旨在分析这些突变对 p53-ERα 相互作用的影响。为此,我们构建了全长人 p53 结构,并使用 PROCHECK 验证其质量,然后使用 NOMAD-Ref 网络服务器进行能量最小化。从蛋白质数据库下载 ERα 激活功能-2(AF-2)结构域的三维结构。使用 ZDOCK 研究模型化的天然和突变(R110P、P278A、P151T)p53 与 ERα 之间的相互作用。使用 Weka 软件对相互作用进行机器学习预测。蛋白质-蛋白质对接结果表明,与天然复合物相比,R110P 突变使 p53 和 ERα 的界面原子、残基和溶剂可及表面积(SASA)增加,表明与其他两种突变相比,R110P 突变对 p53-ERα 相互作用的影响更大。另一方面,突变 P151T 和 P278A 在表面的原子和残基上与天然 p53-ERα 复合物有较大偏差。此外,人工神经网络分析的结果表明,这些结构特征对于预测这三种突变对 p53-ERα 相互作用的影响很重要。总体而言,这三种突变使 p53 和 ERα 的总 SASA 有很大偏差。总之,我们的研究结果对于做出针对乳腺癌的激素治疗决策至关重要。