Suppr超能文献

紫杉醇处理细胞中纺锤体形成的活细胞分析

Live-cell analysis of mitotic spindle formation in taxol-treated cells.

作者信息

Hornick Jessica E, Bader Jason R, Tribble Emily K, Trimble Kayleigh, Breunig J Scott, Halpin Elizabeth S, Vaughan Kevin T, Hinchcliffe Edward H

机构信息

Department of Biological Sciences and Notre Dame Integrated Imaging Facility, University of Notre Dame, Notre Dame, Indiana 46556, USA.

出版信息

Cell Motil Cytoskeleton. 2008 Aug;65(8):595-613. doi: 10.1002/cm.20283.

Abstract

Taxol functions to suppress the dynamic behavior of individual microtubules, and induces multipolar mitotic spindles. However, little is known about the mechanisms by which taxol disrupts normal bipolar spindle assembly in vivo. Using live imaging of GFP-alpha tubulin expressing cells, we examined spindle assembly after taxol treatment. We find that as taxol-treated cells enter mitosis, there is a dramatic re-distribution of the microtubule network from the centrosomes to the cell cortex. As they align there, the cortical microtubules recruit NuMA to their embedded ends, followed by the kinesin motor HSET. These cortical microtubules then bud off to form cytasters, which fuse into multipolar spindles. Cytoplasmic dynein and dynactin do not re-localize to cortical microtubules, and disruption of dynein/dynactin interactions by over-expression of p50 "dynamitin" does not prevent cytaster formation. Taxol added well before spindle poles begin to form induces multipolarity, but taxol added after nascent spindle poles are visible-but before NEB is complete-results in bipolar spindles. Our results suggest that taxol prevents rapid transport of key components, such as NuMA, to the nascent spindle poles. The net result is loss of mitotic spindle pole cohesion, microtubule re-distribution, and cytaster formation.

摘要

紫杉醇的作用是抑制单个微管的动态行为,并诱导多极有丝分裂纺锤体的形成。然而,关于紫杉醇在体内破坏正常双极纺锤体组装的机制,人们所知甚少。我们利用表达绿色荧光蛋白-α微管蛋白的细胞进行实时成像,研究了紫杉醇处理后的纺锤体组装情况。我们发现,在紫杉醇处理的细胞进入有丝分裂时,微管网络会从中心体急剧重新分布到细胞皮层。当它们在那里排列时,皮层微管会将核有丝分裂装置蛋白招募到其嵌入的末端,随后是驱动蛋白HSET。这些皮层微管随后会出芽形成星体,星体融合形成多极纺锤体。细胞质动力蛋白和动力蛋白激活蛋白不会重新定位到皮层微管,并且通过过表达p50“动力抑制蛋白”破坏动力蛋白/动力蛋白激活蛋白的相互作用并不能阻止星体的形成。在纺锤体极开始形成之前很久添加紫杉醇会诱导多极性,但在新生纺锤体极可见后但在核膜破裂完成之前添加紫杉醇会导致双极纺锤体的形成。我们的结果表明,紫杉醇会阻止关键成分(如核有丝分裂装置蛋白)向新生纺锤体极的快速运输。最终结果是有丝分裂纺锤体极凝聚力丧失、微管重新分布和星体形成。

相似文献

1
Live-cell analysis of mitotic spindle formation in taxol-treated cells.
Cell Motil Cytoskeleton. 2008 Aug;65(8):595-613. doi: 10.1002/cm.20283.
2
Formation of spindle poles by dynein/dynactin-dependent transport of NuMA.
J Cell Biol. 2000 May 15;149(4):851-62. doi: 10.1083/jcb.149.4.851.
3
Cytoplasmic dynein-mediated assembly of pericentrin and gamma tubulin onto centrosomes.
Mol Biol Cell. 2000 Jun;11(6):2047-56. doi: 10.1091/mbc.11.6.2047.
5
Protein 4.1R, a microtubule-associated protein involved in microtubule aster assembly in mammalian mitotic extract.
J Biol Chem. 2004 Aug 13;279(33):34595-602. doi: 10.1074/jbc.M404051200. Epub 2004 Jun 7.
6
NuMA is a mitotic adaptor protein that activates dynein and connects it to microtubule minus ends.
J Cell Biol. 2025 Apr 7;224(4). doi: 10.1083/jcb.202408118. Epub 2025 Feb 11.
8
The dynamics of microtubule minus ends in the human mitotic spindle.
Nat Cell Biol. 2014 Aug;16(8):770-8. doi: 10.1038/ncb2996. Epub 2014 Jun 29.
9
Role of NuMA in vertebrate cells: review of an intriguing multifunctional protein.
Front Biosci. 2006 Jan 1;11:1137-46. doi: 10.2741/1868.
10
Constitutive dynein activity in She1 mutants reveals differences in microtubule attachment at the yeast spindle pole body.
Mol Biol Cell. 2012 Jun;23(12):2319-26. doi: 10.1091/mbc.E12-03-0223. Epub 2012 Apr 25.

引用本文的文献

3
Substances of Natural Origin in Medicine: Plants vs. Cancer.
Cells. 2023 Mar 23;12(7):986. doi: 10.3390/cells12070986.
4
Early Pharmacological Profiling of Antiproliferative Compounds by Live Cell Imaging.
Molecules. 2022 Aug 17;27(16):5261. doi: 10.3390/molecules27165261.
6
Dual role of deubiquitinating enzyme USP19 regulates mitotic progression and tumorigenesis by stabilizing survivin.
Mol Ther. 2022 Nov 2;30(11):3414-3429. doi: 10.1016/j.ymthe.2022.07.019. Epub 2022 Aug 1.
7
Interphase microtubule disassembly is a signaling cue that drives cell rounding at mitotic entry.
J Cell Biol. 2022 Jun 6;221(6). doi: 10.1083/jcb.202109065. Epub 2022 Apr 28.
8
Inhibition of Microtubule Dynamics in Cancer Cells by Indole-Modified Latonduine Derivatives and Their Metal Complexes.
Inorg Chem. 2022 Jan 24;61(3):1456-1470. doi: 10.1021/acs.inorgchem.1c03154. Epub 2022 Jan 7.
10
LIN9 and NEK2 Are Core Regulators of Mitotic Fidelity That Can Be Therapeutically Targeted to Overcome Taxane Resistance.
Cancer Res. 2020 Apr 15;80(8):1693-1706. doi: 10.1158/0008-5472.CAN-19-3466. Epub 2020 Feb 13.

本文引用的文献

1
Analysis of a RanGTP-regulated gradient in mitotic somatic cells.
Nature. 2006 Mar 30;440(7084):697-701. doi: 10.1038/nature04589.
3
Taxol-stabilized microtubules can position the cytokinetic furrow in mammalian cells.
Mol Biol Cell. 2005 Sep;16(9):4423-36. doi: 10.1091/mbc.e04-11-0974. Epub 2005 Jun 22.
4
Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein.
Nat Biotechnol. 2004 Dec;22(12):1567-72. doi: 10.1038/nbt1037. Epub 2004 Nov 21.
5
Cell and molecular biology of spindle poles and NuMA.
Int Rev Cytol. 2004;238:1-57. doi: 10.1016/S0074-7696(04)38001-0.
6
Surfing, regulating and capturing: are all microtubule-tip-tracking proteins created equal?
Trends Cell Biol. 2004 Sep;14(9):491-6. doi: 10.1016/j.tcb.2004.07.011.
7
E pluribus unum: towards a universal mechanism for spindle assembly.
Trends Cell Biol. 2004 Aug;14(8):413-9. doi: 10.1016/j.tcb.2004.07.004.
8
Organization and dynamics of growing microtubule plus ends during early mitosis.
Mol Biol Cell. 2003 Mar;14(3):916-25. doi: 10.1091/mbc.e02-09-0607.
9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验