用于单图像原始数据的实用泊松高斯噪声建模与拟合
Practical Poissonian-Gaussian noise modeling and fitting for single-image raw-data.
作者信息
Foi Alessandro, Trimeche Mejdi, Katkovnik Vladimir, Egiazarian Karen
机构信息
Department of Signal Processing, Tampere University of Technology, Tampere, Finland.
出版信息
IEEE Trans Image Process. 2008 Oct;17(10):1737-54. doi: 10.1109/TIP.2008.2001399.
We present a simple and usable noise model for the raw-data of digital imaging sensors. This signal-dependent noise model, which gives the pointwise standard-deviation of the noise as a function of the expectation of the pixel raw-data output, is composed of a Poissonian part, modeling the photon sensing, and Gaussian part, for the remaining stationary disturbances in the output data. We further explicitly take into account the clipping of the data (over- and under-exposure), faithfully reproducing the nonlinear response of the sensor. We propose an algorithm for the fully automatic estimation of the model parameters given a single noisy image. Experiments with synthetic images and with real raw-data from various sensors prove the practical applicability of the method and the accuracy of the proposed model.
我们提出了一种针对数字成像传感器原始数据的简单且实用的噪声模型。这种依赖信号的噪声模型将噪声的逐点标准差表示为像素原始数据输出期望的函数,它由用于模拟光子传感的泊松部分和用于处理输出数据中其余固定干扰的高斯部分组成。我们还进一步明确考虑了数据的裁剪(过曝光和欠曝光),如实再现了传感器的非线性响应。我们提出了一种算法,用于在给定单个噪声图像的情况下全自动估计模型参数。对合成图像以及来自各种传感器的真实原始数据进行的实验证明了该方法的实际适用性以及所提出模型的准确性。