Zhang Jun, Liem David A, Mueller Michael, Wang Yueju, Zong Chenggong, Deng Ning, Vondriska Thomas M, Korge Paavo, Drews Oliver, Maclellan W Robb, Honda Henry, Weiss James N, Apweiler Rolf, Ping Peipei
Department of Physiology, , David Geffen School of Medicine at UCLA, Los Angeles, California 90095, USA.
J Proteome Res. 2008 Jun;7(6):2204-14. doi: 10.1021/pr070371f. Epub 2008 May 17.
Myocardial ischemia-reperfusion induces mitochondrial dysfunction and, depending upon the degree of injury, may lead to cardiac cell death. However, our ability to understand mitochondrial dysfunction has been hindered by an absence of molecular markers defining the various degrees of injury. To address this paucity of knowledge, we sought to characterize the impact of ischemic damage on mitochondrial proteome biology. We hypothesized that ischemic injury induces differential alterations in various mitochondrial subcompartments, that these proteomic changes are specific to the severity of injury, and that they are important to subsequent cellular adaptations to myocardial ischemic injury. Accordingly, an in vitro model of cardiac mitochondria injury in mice was established to examine two stress conditions: reversible injury (induced by mild calcium overload) and irreversible injury (induced by hypotonic stimuli). Both forms of injury had a drastic impact on the proteome biology of cardiac mitochondria. Altered mitochondrial function was concomitant with significant protein loss/shedding from the injured organelles. In the setting of mild calcium overload, mitochondria retained functionality despite the release of numerous proteins, and the majority of mitochondria remained intact. In contrast, hypotonic stimuli caused severe damage to mitochondrial structure and function, induced increased oxidative modification of mitochondrial proteins, and brought about detrimental changes to the subproteomes of the inner mitochondrial membrane and matrix. Using an established in vivo murine model of regional myocardial ischemic injury, we validated key observations made by the in vitro model. This preclinical investigation provides function and suborganelle location information on a repertoire of cardiac mitochondrial proteins sensitive to ischemia reperfusion stress and highlights protein clusters potentially involved in mitochondrial dysfunction in the setting of ischemic injury.
心肌缺血再灌注会导致线粒体功能障碍,并根据损伤程度可能导致心肌细胞死亡。然而,由于缺乏定义不同损伤程度的分子标志物,我们对线粒体功能障碍的理解能力受到了阻碍。为了解决这一知识匮乏的问题,我们试图描述缺血损伤对线粒体蛋白质组生物学的影响。我们假设缺血损伤会在各种线粒体亚区室中诱导不同的改变,这些蛋白质组学变化对损伤的严重程度具有特异性,并且它们对随后心肌细胞对缺血损伤的适应性变化很重要。因此,建立了小鼠心脏线粒体损伤的体外模型,以研究两种应激条件:可逆性损伤(由轻度钙超载诱导)和不可逆性损伤(由低渗刺激诱导)。两种形式的损伤都对心脏线粒体的蛋白质组生物学产生了巨大影响。线粒体功能改变与受损细胞器中大量蛋白质的丢失/脱落同时发生。在轻度钙超载的情况下,尽管释放了大量蛋白质,线粒体仍保持功能,并且大多数线粒体保持完整。相比之下,低渗刺激对线粒体结构和功能造成严重损害,诱导线粒体蛋白质氧化修饰增加,并导致线粒体内膜和基质亚蛋白质组发生有害变化。使用已建立的局部心肌缺血损伤的体内小鼠模型,我们验证了体外模型的关键观察结果。这项临床前研究提供了对缺血再灌注应激敏感的心脏线粒体蛋白质组的功能和亚细胞器定位信息,并突出了缺血损伤情况下可能参与线粒体功能障碍的蛋白质簇。