Guyer Richard A, Hellman Michael D, Emami Kiarash, Kadlecek Stephen, Cadman Robert V, Yu Jiangsheng, Vadhat Vahid, Ishii Masaru, Woodburn John MacDuffie, Law Michelle, Rizi Rahim R
Department of Radiology, University of Pennsylvania School of Medicine, 422 Curie Blvd, B1 Stellar-Chance Labs, Philadelphia, PA 19104-6100, USA.
Acad Radiol. 2008 Jun;15(6):740-52. doi: 10.1016/j.acra.2008.03.002.
Estimation of regional lung function parameters from hyperpolarized gas magnetic resonance images can be very sensitive to presence of noise. Clustering pixels and averaging over the resulting groups is an effective method for reducing the effects of noise in these images, commonly performed by grouping proximal pixels together, thus creating large groups called "bins." This method has several drawbacks, primarily that it can group dissimilar pixels together, and it degrades spatial resolution. This study presents an improved approach to simplifying data via principal component analysis (PCA) when noise level prohibits a pixel-by-pixel treatment of data, by clustering them based on similarity to one another rather than spatial proximity. The application to this technique is demonstrated in measurements of regional lung oxygen tension using hyperpolarized (3)He magnetic resonance imaging (MRI).
A synthetic dataset was generated from an experimental set of oxygen tension measurements by treating the experimentally derived parameters as "true" values, and then solving backwards to generate "noiseless" images. Artificial noise was added to the synthetic data, and both traditional binning and PCA-based clustering were performed. For both methods, the root-mean-square (RMS) error between each pixel's "estimated" and "true" parameters was computed and the resulting effects were compared.
At high signal-to-noise ratios (SNRs), clustering did not enhance accuracy. Clustering did, however, improve parameter estimations for moderate SNR values (below 100). For SNR values between 100 and 20, the PCA-based K-means clustering analysis yielded greater accuracy than Cartesian binning. In extreme cases (SNR<5), Cartesian binning can be more accurate.
The reliability of parameters estimation in imaging-based regional functional measurements can be improved in the presence of noise by utilizing principal component analysis-based clustering without sacrificing spatial resolution compared to Cartesian binning. Results suggest that this approach has a great potential for robust grouping of pixels in hyperpolarized (3)He MRI maps of lung oxygen tension.
从超极化气体磁共振图像中估计局部肺功能参数可能对噪声的存在非常敏感。对像素进行聚类并对所得组进行平均是减少这些图像中噪声影响的有效方法,通常通过将相邻像素分组在一起,从而创建称为“bin”的大组来实现。该方法有几个缺点,主要是它可能将不相似的像素分组在一起,并且会降低空间分辨率。本研究提出了一种改进方法,当噪声水平禁止对数据进行逐个像素处理时,通过基于彼此的相似性而非空间接近度对数据进行聚类,利用主成分分析(PCA)简化数据。该技术在使用超极化(3)He磁共振成像(MRI)测量局部肺氧张力中的应用得到了证明。
通过将实验得出的参数视为“真实”值,然后反向求解以生成“无噪声”图像,从一组氧张力测量实验数据中生成了一个合成数据集。向合成数据中添加了人工噪声,并进行了传统的分箱和基于PCA的聚类。对于这两种方法,计算每个像素的“估计”和“真实”参数之间的均方根(RMS)误差,并比较所得结果。
在高信噪比(SNR)下,聚类并未提高准确性。然而,对于中等SNR值(低于100),聚类确实改善了参数估计。对于SNR值在100到20之间的情况,基于PCA的K均值聚类分析比笛卡尔分箱产生了更高的准确性。在极端情况下(SNR<5),笛卡尔分箱可能更准确。
与笛卡尔分箱相比,在存在噪声的情况下,通过使用基于主成分分析的聚类,在不牺牲空间分辨率的情况下,可以提高基于成像的局部功能测量中参数估计的可靠性。结果表明,这种方法在超极化(3)He肺氧张力MRI图中对像素进行稳健分组具有很大潜力。