Suppr超能文献

构象平衡的差异区分了内皮型和神经型一氧化氮合酶黄素蛋白的催化作用。

Differences in a conformational equilibrium distinguish catalysis by the endothelial and neuronal nitric-oxide synthase flavoproteins.

作者信息

Ilagan Robielyn P, Tiso Mauro, Konas David W, Hemann Craig, Durra Deborah, Hille Russ, Stuehr Dennis J

机构信息

Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA.

出版信息

J Biol Chem. 2008 Jul 11;283(28):19603-15. doi: 10.1074/jbc.M802914200. Epub 2008 May 16.

Abstract

Nitric oxide (NO) is a physiological mediator synthesized by NO synthases (NOS). Despite their structural similarity, endothelial NOS (eNOS) has a 6-fold lower NO synthesis activity and 6-16-fold lower cytochrome c reductase activity than neuronal NOS (nNOS), implying significantly different electron transfer capacities. We utilized purified reductase domain constructs of either enzyme (bovine eNOSr and rat nNOSr) to investigate the following three mechanisms that may control their electron transfer: (i) the set point and control of a two-state conformational equilibrium of their FMN subdomains; (ii) the flavin midpoint reduction potentials; and (iii) the kinetics of NOSr-NADP+ interactions. Although eNOSr and nNOSr differed in their NADP(H) interaction and flavin thermodynamics, the differences were minor and unlikely to explain their distinct electron transfer activities. In contrast, calmodulin (CaM)-free eNOSr favored the FMN-shielded (electron-accepting) conformation over the FMN-deshielded (electron-donating) conformation to a much greater extent than did CaM-free nNOSr when the bound FMN cofactor was poised in each of its three possible oxidation states. NADPH binding only stabilized the FMN-shielded conformation of nNOSr, whereas CaM shifted both enzymes toward the FMN-deshielded conformation. Analysis of cytochrome c reduction rates measured within the first catalytic turnover revealed that the rate of conformational change to the FMN-deshielded state differed between eNOSr and nNOSr and was rate-limiting for either CaM-free enzyme. We conclude that the set point and regulation of the FMN conformational equilibrium differ markedly in eNOSr and nNOSr and can explain the lower electron transfer activity of eNOSr.

摘要

一氧化氮(NO)是由一氧化氮合酶(NOS)合成的一种生理介质。尽管它们在结构上相似,但内皮型一氧化氮合酶(eNOS)的NO合成活性比神经元型一氧化氮合酶(nNOS)低6倍,细胞色素c还原酶活性低6至16倍,这意味着它们的电子转移能力存在显著差异。我们利用这两种酶的纯化还原酶结构域构建体(牛eNOSr和大鼠nNOSr)来研究以下三种可能控制其电子转移的机制:(i)其FMN亚结构域的双态构象平衡的设定点和控制;(ii)黄素中点还原电位;(iii)NOSr-NADP+相互作用的动力学。尽管eNOSr和nNOSr在NADP(H)相互作用和黄素热力学方面存在差异,但这些差异很小,不太可能解释它们不同的电子转移活性。相比之下,当结合的FMN辅因子处于其三种可能的氧化态中的每一种时,无钙调蛋白(CaM)的eNOSr比无CaM的nNOSr更倾向于FMN屏蔽(电子接受)构象而非FMN去屏蔽(电子供体)构象。NADPH结合仅稳定了nNOSr的FMN屏蔽构象,而CaM使两种酶都向FMN去屏蔽构象转变。对第一次催化周转期间测得的细胞色素c还原速率的分析表明,eNOSr和nNOSr向FMN去屏蔽状态的构象变化速率不同,并且是无CaM酶的限速因素。我们得出结论,eNOSr和nNOSr中FMN构象平衡的设定点和调节存在显著差异,这可以解释eNOSr较低的电子转移活性。

相似文献

引用本文的文献

9
Molecular architecture of mammalian nitric oxide synthases.哺乳动物一氧化氮合酶的分子结构
Proc Natl Acad Sci U S A. 2014 Sep 2;111(35):E3614-23. doi: 10.1073/pnas.1413763111. Epub 2014 Aug 14.

本文引用的文献

5
A connecting hinge represses the activity of endothelial nitric oxide synthase.连接铰链抑制内皮型一氧化氮合酶的活性。
Proc Natl Acad Sci U S A. 2007 May 29;104(22):9254-9. doi: 10.1073/pnas.0700332104. Epub 2007 May 21.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验