Dai Yue, Haque Mohammad Mahfuzul, Stuehr Dennis J
From the Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195 and.
the Department of Chemistry, Cleveland State University, Cleveland, Ohio 44115.
J Biol Chem. 2017 Apr 21;292(16):6753-6764. doi: 10.1074/jbc.M117.777219. Epub 2017 Feb 23.
The signaling molecule nitric oxide (NO) is synthesized in animals by structurally related NO synthases (NOSs), which contain NADPH/FAD- and FMN-binding domains. During catalysis, NADPH-derived electrons transfer into FAD and then distribute into the FMN domain for further transfer to internal or external heme groups. Conformational freedom of the FMN domain is thought to be essential for the electron transfer (ET) reactions in NOSs. To directly examine this concept, we utilized a "Cys-lite" neuronal NOS flavoprotein domain and substituted Cys for two residues (Glu-816 and Arg-1229) forming a salt bridge between the NADPH/FAD and FMN domains in the conformationally closed structure to allow cross-domain disulfide bond formation or cross-linking by bismaleimides of various lengths. The disulfide bond cross-link caused a ≥95% loss of cytochrome reductase activity that was reversible with DTT treatment, whereas graded cross-link lengthening gradually increased activity, thus defining the conformational constraints in the catalytic process. We used spectroscopic and stopped-flow techniques to further investigate how the changes in FMN domain conformational freedom impact the following: (i) the NADPH interaction; (ii) kinetics of electron loading (flavin reduction); (iii) stabilization of open closed conformational forms in two different flavin redox states; (iv) reactivity of the reduced FMN domain toward cytochrome ; (v) response to calmodulin binding; and (vi) the rates of interflavin ET and the FMN domain conformational dynamics. Together, our findings help explain how the spatial and temporal behaviors of the FMN domain impact catalysis by the NOS flavoprotein domain and how these behaviors are governed to enable electron flow through the enzyme.
信号分子一氧化氮(NO)在动物体内由结构相关的一氧化氮合酶(NOSs)合成,这些酶含有NADPH/FAD和FMN结合结构域。在催化过程中,NADPH衍生的电子转移到FAD中,然后分布到FMN结构域,以便进一步转移到内部或外部血红素基团。FMN结构域的构象自由度被认为对NOSs中的电子转移(ET)反应至关重要。为了直接检验这一概念,我们利用了一种“半胱氨酸简化型”神经元NOS黄素蛋白结构域,并用半胱氨酸取代了两个残基(Glu-816和Arg-1229),这两个残基在构象封闭结构中在NADPH/FAD和FMN结构域之间形成盐桥,以允许跨结构域二硫键形成或通过不同长度的双马来酰亚胺进行交联。二硫键交联导致细胞色素还原酶活性损失≥95%,用DTT处理可逆转,而分级交联延长逐渐增加活性,从而确定了催化过程中的构象限制。我们使用光谱和停流技术进一步研究FMN结构域构象自由度的变化如何影响以下方面:(i)NADPH相互作用;(ii)电子加载动力学(黄素还原);(iii)两种不同黄素氧化还原状态下开放-封闭构象形式的稳定化;(iv)还原型FMN结构域对细胞色素的反应性;(v)对钙调蛋白结合的反应;以及(vi)黄素间ET速率和FMN结构域构象动力学。总之,我们的研究结果有助于解释FMN结构域的空间和时间行为如何影响NOS黄素蛋白结构域的催化作用,以及这些行为是如何被调控以实现电子在酶中的流动。