Suppr超能文献

限制神经元型一氧化氮合酶黄素蛋白结构域的构象自由度揭示了其对电子传递和催化的影响。

Restricting the conformational freedom of the neuronal nitric-oxide synthase flavoprotein domain reveals impact on electron transfer and catalysis.

作者信息

Dai Yue, Haque Mohammad Mahfuzul, Stuehr Dennis J

机构信息

From the Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195 and.

the Department of Chemistry, Cleveland State University, Cleveland, Ohio 44115.

出版信息

J Biol Chem. 2017 Apr 21;292(16):6753-6764. doi: 10.1074/jbc.M117.777219. Epub 2017 Feb 23.

Abstract

The signaling molecule nitric oxide (NO) is synthesized in animals by structurally related NO synthases (NOSs), which contain NADPH/FAD- and FMN-binding domains. During catalysis, NADPH-derived electrons transfer into FAD and then distribute into the FMN domain for further transfer to internal or external heme groups. Conformational freedom of the FMN domain is thought to be essential for the electron transfer (ET) reactions in NOSs. To directly examine this concept, we utilized a "Cys-lite" neuronal NOS flavoprotein domain and substituted Cys for two residues (Glu-816 and Arg-1229) forming a salt bridge between the NADPH/FAD and FMN domains in the conformationally closed structure to allow cross-domain disulfide bond formation or cross-linking by bismaleimides of various lengths. The disulfide bond cross-link caused a ≥95% loss of cytochrome reductase activity that was reversible with DTT treatment, whereas graded cross-link lengthening gradually increased activity, thus defining the conformational constraints in the catalytic process. We used spectroscopic and stopped-flow techniques to further investigate how the changes in FMN domain conformational freedom impact the following: (i) the NADPH interaction; (ii) kinetics of electron loading (flavin reduction); (iii) stabilization of open closed conformational forms in two different flavin redox states; (iv) reactivity of the reduced FMN domain toward cytochrome ; (v) response to calmodulin binding; and (vi) the rates of interflavin ET and the FMN domain conformational dynamics. Together, our findings help explain how the spatial and temporal behaviors of the FMN domain impact catalysis by the NOS flavoprotein domain and how these behaviors are governed to enable electron flow through the enzyme.

摘要

信号分子一氧化氮(NO)在动物体内由结构相关的一氧化氮合酶(NOSs)合成,这些酶含有NADPH/FAD和FMN结合结构域。在催化过程中,NADPH衍生的电子转移到FAD中,然后分布到FMN结构域,以便进一步转移到内部或外部血红素基团。FMN结构域的构象自由度被认为对NOSs中的电子转移(ET)反应至关重要。为了直接检验这一概念,我们利用了一种“半胱氨酸简化型”神经元NOS黄素蛋白结构域,并用半胱氨酸取代了两个残基(Glu-816和Arg-1229),这两个残基在构象封闭结构中在NADPH/FAD和FMN结构域之间形成盐桥,以允许跨结构域二硫键形成或通过不同长度的双马来酰亚胺进行交联。二硫键交联导致细胞色素还原酶活性损失≥95%,用DTT处理可逆转,而分级交联延长逐渐增加活性,从而确定了催化过程中的构象限制。我们使用光谱和停流技术进一步研究FMN结构域构象自由度的变化如何影响以下方面:(i)NADPH相互作用;(ii)电子加载动力学(黄素还原);(iii)两种不同黄素氧化还原状态下开放-封闭构象形式的稳定化;(iv)还原型FMN结构域对细胞色素的反应性;(v)对钙调蛋白结合的反应;以及(vi)黄素间ET速率和FMN结构域构象动力学。总之,我们的研究结果有助于解释FMN结构域的空间和时间行为如何影响NOS黄素蛋白结构域的催化作用,以及这些行为是如何被调控以实现电子在酶中的流动。

相似文献

2
3
6
Electron transfer is activated by calmodulin in the flavin domain of human neuronal nitric oxide synthase.
Arch Biochem Biophys. 2003 Apr 1;412(1):65-76. doi: 10.1016/s0003-9861(03)00009-2.
9
Calmodulin activates intramolecular electron transfer between the two flavins of neuronal nitric oxide synthase flavin domain.
Biochim Biophys Acta. 1999 Dec 27;1473(2-3):345-55. doi: 10.1016/s0304-4165(99)00193-2.
10
A cross-domain charge interaction governs the activity of NO synthase.
J Biol Chem. 2018 Mar 23;293(12):4545-4554. doi: 10.1074/jbc.RA117.000635. Epub 2018 Feb 2.

引用本文的文献

1
A Split Gene Approach to Alleviate Severe Inhibition of Catalysis by Substrate.
Biochemistry. 2025 Jul 1;64(13):2867-2876. doi: 10.1021/acs.biochem.5c00219. Epub 2025 Jun 11.
2
Heme delivery into soluble guanylyl cyclase requires a heme redox change and is regulated by NO and Hsp90 by distinct mechanisms.
J Biol Chem. 2025 Mar;301(3):108315. doi: 10.1016/j.jbc.2025.108315. Epub 2025 Feb 13.
4
Probing Protein Dynamics in Neuronal Nitric Oxide Synthase by Quantitative Cross-Linking Mass Spectrometry.
Biochemistry. 2023 Aug 1;62(15):2232-2237. doi: 10.1021/acs.biochem.3c00245. Epub 2023 Jul 17.
5
Involvement of nitrergic neurons in colonic motility in a rat model of ulcerative colitis.
World J Gastroenterol. 2022 Aug 7;28(29):3854-3868. doi: 10.3748/wjg.v28.i29.3854.
6
GAPDH delivers heme to soluble guanylyl cyclase.
J Biol Chem. 2020 Jun 12;295(24):8145-8154. doi: 10.1074/jbc.RA120.013802. Epub 2020 Apr 30.
7
Deciphering mechanism of conformationally controlled electron transfer in nitric oxide synthases.
Front Biosci (Landmark Ed). 2018 Jun 1;23(10):1803-1821. doi: 10.2741/4674.
8

本文引用的文献

1
Phosphorylation Controls Endothelial Nitric-oxide Synthase by Regulating Its Conformational Dynamics.
J Biol Chem. 2016 Oct 28;291(44):23047-23057. doi: 10.1074/jbc.M116.737361. Epub 2016 Sep 9.
2
Single-molecule spectroscopy reveals how calmodulin activates NO synthase by controlling its conformational fluctuation dynamics.
Proc Natl Acad Sci U S A. 2015 Sep 22;112(38):11835-40. doi: 10.1073/pnas.1508829112. Epub 2015 Aug 26.
3
Fluorescence quenching studies of structure and dynamics in calmodulin-eNOS complexes.
FEBS Lett. 2015 May 8;589(11):1173-8. doi: 10.1016/j.febslet.2015.03.035. Epub 2015 Apr 11.
4
5
Towards the free energy landscape for catalysis in mammalian nitric oxide synthases.
FEBS J. 2015 Aug;282(16):3016-29. doi: 10.1111/febs.13171. Epub 2014 Dec 26.
9
Srs2 prevents Rad51 filament formation by repetitive motion on DNA.
Nat Commun. 2013;4:2281. doi: 10.1038/ncomms3281.
10
Redox-linked domain movements in the catalytic cycle of cytochrome p450 reductase.
Structure. 2013 Sep 3;21(9):1581-9. doi: 10.1016/j.str.2013.06.022. Epub 2013 Aug 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验