Suppr超能文献

通过本体关系增强知识表示。

Enhancing knowledge representations by ontological relations.

作者信息

Denecke Kerstin

机构信息

Research Center L3S, University of Hannover, Germany.

出版信息

Stud Health Technol Inform. 2008;136:791-6.

Abstract

Several medical natural language processing (NLP) systems currently base on ontologies that provide the domain knowledge. But, relationships between concepts defined in ontologies as well as relations predefined in a semantic network are widely unused in this context. The objective of this paper is to analyse potentials of using ontological relations to produce correct semantic structures for a medical document automatically and to ameliorate and enrich these structures. Knowledge representations to unstructured medical narratives are generated by means of the method SeReMeD. This approach is based on semantic transformation rules for mapping syntactic information to semantic roles. Contextual relations expressed in natural language are automatically identified and represented in the generated structures. To achieve additional semantic relationships between concepts, the UMLS Medical Semantic Network and relationships between concepts predefined in the UMLS Metathesaurus are used to support the structuring process of SeReMeD. First results show that these relations can enhance and ameliorate the automatically generated semantic structures.

摘要

目前,有几个医学自然语言处理(NLP)系统基于提供领域知识的本体。但是,在此背景下,本体中定义的概念之间的关系以及语义网络中预定义的关系并未得到广泛应用。本文的目的是分析利用本体关系为医学文档自动生成正确语义结构并改进和丰富这些结构的潜力。通过SeReMeD方法生成对非结构化医学叙述的知识表示。这种方法基于将句法信息映射到语义角色的语义转换规则。自然语言中表达的上下文关系在生成的结构中自动识别和表示。为了在概念之间实现额外的语义关系,使用UMLS医学语义网络和UMLS元词表中预定义的概念之间的关系来支持SeReMeD的结构化过程。初步结果表明,这些关系可以增强和改进自动生成的语义结构。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验