Suppr超能文献

用于生物医学语言处理的统一医学语言系统知识。

UMLS knowledge for biomedical language processing.

作者信息

McCray A T, Aronson A R, Browne A C, Rindflesch T C, Razi A, Srinivasan S

机构信息

Computer Science Branch, National Library of Medicine, Bethesda, MD 20894.

出版信息

Bull Med Libr Assoc. 1993 Apr;81(2):184-94.

Abstract

This paper describes efforts to provide access to the free text in biomedical databases. The focus of the effort is the development of SPECIALIST, an experimental natural language processing system for the biomedical domain. The system includes a broad coverage parser supported by a large lexicon, modules that provide access to the extensive Unified Medical Language System (UMLS) Knowledge Sources, and a retrieval module that permits experiments in information retrieval. The UMLS Metathesaurus and Semantic Network provide a rich source of biomedical concepts and their interrelationships. Investigations have been conducted to determine the type of information required to effect a map between the language of queries and the language of relevant documents. Mappings are never straightforward and often involve multiple inferences.

摘要

本文描述了为获取生物医学数据库中的自由文本所做的努力。这项工作的重点是开发SPECIALIST,这是一个用于生物医学领域的实验性自然语言处理系统。该系统包括一个由大型词典支持的广泛覆盖的解析器、提供对广泛的统一医学语言系统(UMLS)知识源访问的模块,以及一个允许进行信息检索实验的检索模块。UMLS元词表和语义网络提供了丰富的生物医学概念及其相互关系的来源。已经进行了调查,以确定实现查询语言与相关文档语言之间映射所需的信息类型。映射从来都不是直接的,而且往往涉及多个推理。

相似文献

1
UMLS knowledge for biomedical language processing.
Bull Med Libr Assoc. 1993 Apr;81(2):184-94.
3
Consistency across the hierarchies of the UMLS Semantic Network and Metathesaurus.
J Biomed Inform. 2003 Dec;36(6):450-61. doi: 10.1016/j.jbi.2003.11.001.
4
User-centered semantic harmonization: a case study.
J Biomed Inform. 2007 Jun;40(3):353-64. doi: 10.1016/j.jbi.2007.03.004. Epub 2007 Mar 21.
7
Enhancing knowledge representations by ontological relations.
Stud Health Technol Inform. 2008;136:791-6.
9
Interpreting natural language queries using the UMLS.
Proc Annu Symp Comput Appl Med Care. 1993:294-8.
10
Designing metaschemas for the UMLS enriched semantic network.
J Biomed Inform. 2003 Dec;36(6):433-49. doi: 10.1016/j.jbi.2003.11.006.

引用本文的文献

3
Ischemic Stroke Etiology Classification by Ensemble Consensus Modeling Using Electronic Health Records.
Res Sq. 2023 Oct 31:rs.3.rs-3367169. doi: 10.21203/rs.3.rs-3367169/v1.
4
A universal diagnosis syntax.
BMC Med Inform Decis Mak. 2023 Jul 31;23(1):143. doi: 10.1186/s12911-023-02209-0.
5
Comparison of Pretraining Models and Strategies for Health-Related Social Media Text Classification.
Healthcare (Basel). 2022 Aug 5;10(8):1478. doi: 10.3390/healthcare10081478.
7
Mining long-COVID symptoms from Reddit: characterizing post-COVID syndrome from patient reports.
JAMIA Open. 2021 Sep 2;4(3):ooab075. doi: 10.1093/jamiaopen/ooab075. eCollection 2021 Jul.
8
LexExp: a system for automatically expanding concept lexicons for noisy biomedical texts.
Bioinformatics. 2021 Aug 25;37(16):2499-2501. doi: 10.1093/bioinformatics/btaa995.
10
The Unified Medical Language System SPECIALIST Lexicon and Lexical Tools: Development and applications.
J Am Med Inform Assoc. 2020 May 29;27(10):1600-5. doi: 10.1093/jamia/ocaa056.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验