Suppr超能文献

常见和罕见等位基因作为复杂表型的成因。

Common and rare alleles as causes of complex phenotypes.

作者信息

Polychronakos Constantin

机构信息

Montreal Children's Hospital, 2300 Tupper Street, Suite C244, Montreal, Quebec, H3H 1P3, Canada.

出版信息

Curr Atheroscler Rep. 2008 Jun;10(3):194-200. doi: 10.1007/s11883-008-0031-1.

Abstract

A full understanding of the molecular basis for genetically determined human traits, including susceptibility to disease, appears to be within reach following recent breakthroughs. How fully this promise will be realized, and by which combination of study designs, will depend to a large extent on the allelic architecture of each trait, which is still unknown in most cases. The prevailing belief that traits common in the general population must depend on common variants is challenged by theoretical predictions based on the mutation-selection model. This model states that if disease variants are subject to even weak purifying selection, their presence can be maintained only by new mutations, resulting in a multitude of rare alleles at each locus. Predictions favoring each scenario have relied on biased evidence and unverifiable assumptions, respectively. However, unbiased factual testing of them may soon be possible, as data accumulate from genome-wide association studies and high-throughput resequencing. Because the models are not mutually exclusive, the question should be not which model is correct, but rather what is the relative contribution of each, which is something that may vary dramatically among traits.

摘要

随着近期取得的突破,全面了解由基因决定的人类特征(包括对疾病的易感性)的分子基础似乎指日可待。这一前景能在多大程度上得以实现,以及通过何种研究设计组合来实现,在很大程度上取决于每个特征的等位基因结构,而在大多数情况下,其等位基因结构仍不为人知。基于突变选择模型的理论预测对普遍存在于普通人群中的特征必定依赖常见变异这一普遍观点提出了挑战。该模型指出,如果疾病变异即使受到微弱的纯化选择,其存在也只能通过新的突变来维持,从而在每个基因座产生大量罕见等位基因。支持每种情况的预测分别依赖于有偏差的证据和无法验证的假设。然而,随着全基因组关联研究和高通量重测序积累的数据越来越多,不久之后或许就可以对它们进行无偏差的事实检验。由于这些模型并非相互排斥,问题不应是哪种模型正确,而应是每种模型的相对贡献是什么,而这在不同特征之间可能有很大差异。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验