Gao Zhaobing, Xiong Qiaojie, Sun Haiyan, Li Min
Department of Neuroscience and High Throughput Biology Center, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205, USA.
J Biol Chem. 2008 Aug 15;283(33):22649-58. doi: 10.1074/jbc.M802426200. Epub 2008 May 19.
Chemical openers for KCNQ potassium channels are useful probes both for understanding channel gating and for developing therapeutics. The five KCNQ isoforms (KCNQ1 to KCNQ5, or Kv7.1 to Kv7.5) are differentially localized. Therefore, the molecular specificity of chemical openers is an important subject of investigation. Native KCNQ1 normally exists in complex with auxiliary subunits known as KCNE. In cardiac myocytes, the KCNQ1-KCNE1 (IsK or minK) channel is thought to underlie the I(Ks) current, a component critical for membrane repolarization during cardiac action potential. Hence, the molecular and pharmacological differences between KCNQ1 and KCNQ1-KCNE1 channels have been important topics. Zinc pyrithione (ZnPy) is a newly identified KCNQ channel opener, which potently activates KCNQ2, KCNQ4, and KCNQ5. However, the ZnPy effects on cardiac KCNQ1 potassium channels remain largely unknown. Here we show that ZnPy effectively augments the KCNQ1 current, exhibiting an increase in current amplitude, reduction of inactivation, and slowing of both activation and deactivation. Some of these are reminiscent of effects by KCNE1. In addition, neither the heteromultimeric KCNQ1-KCNE1 channels nor native I(Ks) current displayed any sensitivity to ZnPy, indicating that the static occupancy by a KCNE subunit desensitizes the reversible effects by a chemical opener. Site-directed mutagenesis of KCNQ1 reveals that residues critical for the potentiation effects by either ZnPy or KCNE are clustered together in the S6 region overlapping with the critical gating determinants. Thus, the convergence of potentiation effects and molecular determinants critical for both an auxiliary subunit and a chemical opener argue for a mechanistic overlap in causing potentiation.
KCNQ钾通道的化学开放剂对于理解通道门控以及开发治疗药物都是有用的探针。五种KCNQ亚型(KCNQ1至KCNQ5,或Kv7.1至Kv7.5)定位不同。因此,化学开放剂的分子特异性是一个重要的研究课题。天然KCNQ1通常与称为KCNE的辅助亚基形成复合物存在。在心肌细胞中,KCNQ1-KCNE1(IsK或minK)通道被认为是I(Ks)电流的基础,I(Ks)电流是心脏动作电位期间膜复极化的关键组成部分。因此,KCNQ1和KCNQ1-KCNE1通道之间的分子和药理学差异一直是重要的研究课题。吡啶硫酮锌(ZnPy)是一种新发现的KCNQ通道开放剂,它能有效激活KCNQ2、KCNQ4和KCNQ5。然而,ZnPy对心脏KCNQ1钾通道的影响在很大程度上仍不清楚。在这里,我们表明ZnPy能有效增强KCNQ1电流,表现为电流幅度增加、失活减少以及激活和失活减慢。其中一些效应让人联想到KCNE1的作用。此外,异源多聚体KCNQ1-KCNE1通道和天然I(Ks)电流对ZnPy均无任何敏感性,这表明KCNE亚基的静态占据使化学开放剂的可逆作用脱敏。对KCNQ1进行定点诱变表明,对ZnPy或KCNE的增强作用至关重要的残基聚集在与关键门控决定因素重叠的S6区域。因此,增强作用和对辅助亚基及化学开放剂均至关重要的分子决定因素的趋同表明在引起增强作用方面存在机制重叠。