Tsuge Hideaki, Nagahama Masahiro, Oda Masataka, Iwamoto Shinobu, Utsunomiya Hiroko, Marquez Victor E, Katunuma Nobuhiko, Nishizawa Mugio, Sakurai Jun
Institute for Health Sciences and Faculty of Pharmaceutical Sciences, Tokushima Bunri University, 180 Yamashiro-cho, Tokushima 770-8514, Japan.
Proc Natl Acad Sci U S A. 2008 May 27;105(21):7399-404. doi: 10.1073/pnas.0801215105. Epub 2008 May 19.
The ADP-ribosylating toxins (ADPRTs) produced by pathogenic bacteria modify intracellular protein and affect eukaryotic cell function. Actin-specific ADPRTs (including Clostridium perfringens iota-toxin and Clostridium botulinum C2 toxin) ADP-ribosylate G-actin at Arg-177, leading to disorganization of the cytoskeleton and cell death. Although the structures of many actin-specific ADPRTs are available, the mechanisms underlying actin recognition and selective ADP-ribosylation of Arg-177 remain unknown. Here we report the crystal structure of actin-Ia in complex with the nonhydrolyzable NAD analog betaTAD at 2.8 A resolution. The structure indicates that Ia recognizes actin via five loops around NAD: loop I (Tyr-60-Tyr-62 in the N domain), loop II (active-site loop), loop III, loop IV (PN loop), and loop V (ADP-ribosylating turn-turn loop). We used site-directed mutagenesis to confirm that loop I on the N domain and loop II are essential for the ADP-ribosyltransferase activity. Furthermore, we revealed that Glu-378 on the EXE loop is in close proximity to Arg-177 in actin, and we proposed that the ADP-ribosylation of Arg-177 proceeds by an SN1 reaction via first an oxocarbenium ion intermediate and second a cationic intermediate by alleviating the strained conformation of the first oxocarbenium ion. Our results suggest a common reaction mechanism for ADPRTs. Moreover, the structure might be of use in rational drug design to block toxin-substrate recognition.
病原菌产生的ADP-核糖基化毒素(ADPRTs)可修饰细胞内蛋白质并影响真核细胞功能。肌动蛋白特异性ADPRTs(包括产气荚膜梭菌iota毒素和肉毒梭菌C2毒素)在精氨酸-177位点对G-肌动蛋白进行ADP-核糖基化,导致细胞骨架紊乱和细胞死亡。尽管许多肌动蛋白特异性ADPRTs的结构已为人所知,但肌动蛋白识别以及精氨酸-177选择性ADP-核糖基化的潜在机制仍不清楚。在此,我们报道了肌动蛋白-Ia与不可水解的NAD类似物βTAD复合物的晶体结构,分辨率为2.8埃。该结构表明,Ia通过围绕NAD的五个环识别肌动蛋白:环I(N结构域中的酪氨酸-60-酪氨酸-62)、环II(活性位点环)、环III、环IV(PN环)和环V(ADP-核糖基化转折环)。我们使用定点诱变证实,N结构域上的环I和环II对ADP-核糖基转移酶活性至关重要。此外,我们发现EXE环上的谷氨酸-378与肌动蛋白中的精氨酸-177紧密相邻,并提出精氨酸-177的ADP-核糖基化通过SN1反应进行,首先形成氧碳鎓离子中间体,其次通过缓解第一个氧碳鎓离子的紧张构象形成阳离子中间体。我们的结果提示了ADPRTs的一种常见反应机制。此外,该结构可能有助于合理药物设计以阻断毒素-底物识别。