Suppr超能文献

空间不确定性下的路径规划

Path planning under spatial uncertainty.

作者信息

Wiener Jan M, Lafon Matthieu, Berthoz Alain

机构信息

LPPA, Collège de France, CNRS, Paris, France.

出版信息

Mem Cognit. 2008 Apr;36(3):495-504. doi: 10.3758/mc.36.3.495.

Abstract

In this article, we present experiments studying path planning under spatial uncertainties. In the main experiment, the participants' task was to navigate the shortest possible path to find an object hidden in one of four places and to bring it to the final destination. The probability of finding the object (probability matrix) was different for each of the four places and varied between conditions. Givensuch uncertainties about the object's location, planning a single path is not sufficient. Participants had to generate multiple consecutive plans (metaplans)--for example: If the object is found in A, proceed to the destination; if the object is not found, proceed to B; and so on. The optimal solution depends on the specific probability matrix. In each condition, participants learned a different probability matrix and were then asked to report the optimal metaplan. Results demonstrate effective integration of the probabilistic information about the object's location during planning. We present a hierarchical planning scheme that could account for participants' behavior, as well as for systematic errors and differences between conditions.

摘要

在本文中,我们展示了研究空间不确定性下路径规划的实验。在主要实验中,参与者的任务是找到一条尽可能短的路径,以找到隐藏在四个地方之一的物体,并将其带到最终目的地。在这四个地方中,找到物体的概率(概率矩阵)各不相同,且在不同条件下有所变化。鉴于物体位置存在这样的不确定性,规划一条单一路径是不够的。参与者必须生成多个连续的计划(元计划)——例如:如果在A处找到物体,前往目的地;如果没有找到物体,前往B处;依此类推。最优解取决于特定的概率矩阵。在每种条件下,参与者学习不同的概率矩阵,然后被要求报告最优元计划。结果表明,在规划过程中,关于物体位置的概率信息得到了有效整合。我们提出了一种分层规划方案,该方案可以解释参与者的行为,以及不同条件下的系统误差和差异。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验