Suppr超能文献

生理水平的胰高血糖素对心脏能量代谢的胰岛素样刺激作用:涉及磷脂酰肌醇-3激酶而非环磷酸腺苷。

Insulin-like stimulation of cardiac fuel metabolism by physiological levels of glucagon: involvement of PI3K but not cAMP.

作者信息

Harney Julie A, Rodgers Robert L

机构信息

Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, Univ. of Rhode Island, 345 Fogarty Hall, Kingston, RI 02881, USA.

出版信息

Am J Physiol Endocrinol Metab. 2008 Jul;295(1):E155-61. doi: 10.1152/ajpendo.90228.2008. Epub 2008 May 20.

Abstract

At concentrations around 10(-9) M or higher, glucagon increases cardiac contractility by activating adenylate cyclase/cyclic adenosine monophosphate (AC/cAMP). However, blood levels in vivo, in rats or humans, rarely exceed 10(-10) M. We investigated whether physiological concentrations of glucagon, not sufficient to increase contractility or ventricular cAMP levels, can influence fuel metabolism in perfused working rat hearts. Two distinct glucagon dose-response curves emerged. One was an expected increase in left ventricular pressure (LVP) occurring between 10(-9.5) and 10(-8) M. The elevations in both LVP and ventricular cAMP levels produced by the maximal concentration (10(-8) M) were blocked by the AC inhibitor NKY80 (20 microM). The other curve, generated at much lower glucagon concentrations and overlapping normal blood levels (10(-11) to 10(-10) M), consisted of a dose-dependent and marked stimulation of glycolysis with no change in LVP. In addition to stimulating glycolysis, glucagon (10(-10) M) also increased glucose oxidation and suppressed palmitate oxidation, mimicking known effects of insulin, without altering ventricular cAMP levels. Elevations in glycolytic flux produced by either glucagon (10(-10) M) or insulin (4 x 10(-10) M) were abolished by the phosphoinositide 3-kinase (PI3K) inhibitor LY-294002 (10 microM) but not significantly affected by NKY80. Glucagon also, like insulin, enhanced the phosphorylation of Akt/PKB, a downstream target of PI3K, and these effects were also abolished by LY-294002. The results are consistent with the hypothesis that physiological levels of glucagon produce insulin-like increases in cardiac glucose utilization in vivo through activation of PI3K and not AC/cAMP.

摘要

在浓度约为10⁻⁹ M或更高时,胰高血糖素通过激活腺苷酸环化酶/环磷酸腺苷(AC/cAMP)来增强心脏收缩力。然而,在大鼠或人类体内,其血液水平很少超过10⁻¹⁰ M。我们研究了生理浓度的胰高血糖素(不足以增强收缩力或心室cAMP水平)是否能影响灌注工作的大鼠心脏中的燃料代谢。出现了两条不同的胰高血糖素剂量反应曲线。一条是预期的左心室压力(LVP)在10⁻⁹·⁵至10⁻⁸ M之间升高。最大浓度(10⁻⁸ M)所产生的LVP和心室cAMP水平的升高被AC抑制剂NKY80(20 μM)阻断。另一条曲线是在低得多的胰高血糖素浓度下产生的,与正常血液水平(10⁻¹¹至10⁻¹⁰ M)重叠,表现为糖酵解的剂量依赖性显著刺激,而LVP无变化。除了刺激糖酵解外,胰高血糖素(10⁻¹⁰ M)还增加了葡萄糖氧化并抑制了棕榈酸氧化,模拟了胰岛素的已知作用,而不改变心室cAMP水平。胰高血糖素(10⁻¹⁰ M)或胰岛素(4×10⁻¹⁰ M)所产生的糖酵解通量升高被磷酸肌醇3激酶(PI3K)抑制剂LY - 294002(10 μM)消除,但未受到NKY80的显著影响。胰高血糖素也像胰岛素一样增强了PI3K的下游靶点Akt/PKB的磷酸化,并且这些作用也被LY - 294002消除。这些结果与以下假设一致,即生理水平的胰高血糖素通过激活PI3K而非AC/cAMP在体内产生类似胰岛素的心脏葡萄糖利用增加。

相似文献

1
Insulin-like stimulation of cardiac fuel metabolism by physiological levels of glucagon: involvement of PI3K but not cAMP.
Am J Physiol Endocrinol Metab. 2008 Jul;295(1):E155-61. doi: 10.1152/ajpendo.90228.2008. Epub 2008 May 20.
2
Glucagon and cyclic AMP: time to turn the page?
Curr Diabetes Rev. 2012 Sep;8(5):362-81. doi: 10.2174/157339912802083540.
3
Type VIII adenylyl cyclase in rat beta cells: coincidence signal detector/generator for glucose and GLP-1.
Diabetologia. 2003 Oct;46(10):1383-93. doi: 10.1007/s00125-003-1203-8. Epub 2003 Sep 17.
4
Impaired cyclic AMP response to stimuli in glucose-desensitized rat pancreatic islets.
Mol Cell Endocrinol. 1995 Aug 30;113(1):19-28. doi: 10.1016/0303-7207(95)03606-8.
5
cAMP signal transduction induces eNOS activation by promoting PKB phosphorylation.
Am J Physiol Heart Circ Physiol. 2006 Jun;290(6):H2376-84. doi: 10.1152/ajpheart.00614.2005. Epub 2006 Jan 20.
9
Insulin-like effects of a physiologic concentration of carnitine on cardiac metabolism.
Mol Cell Biochem. 2001 Oct;226(1-2):97-105. doi: 10.1023/a:1012793924469.

引用本文的文献

2
SGLT2 inhibition improves coronary flow velocity reserve and contractility: role of glucagon signaling.
Cardiovasc Diabetol. 2024 Nov 15;23(1):408. doi: 10.1186/s12933-024-02491-w.
4
Glucagon and Its Receptors in the Mammalian Heart.
Int J Mol Sci. 2023 Aug 15;24(16):12829. doi: 10.3390/ijms241612829.
5
Upregulated TGF-β1 contributes to hyperglycaemia in type 2 diabetes by potentiating glucagon signalling.
Diabetologia. 2023 Jun;66(6):1142-1155. doi: 10.1007/s00125-023-05889-5. Epub 2023 Mar 14.
6
Glucagon, cyclic AMP, and hepatic glucose mobilization: A half-century of uncertainty.
Physiol Rep. 2022 May;10(9):e15263. doi: 10.14814/phy2.15263.
7
Glucagon Decreases IGF-1 Bioactivity in Humans, Independently of Insulin, by Modulating Its Binding Proteins.
J Clin Endocrinol Metab. 2017 Sep 1;102(9):3480-3490. doi: 10.1210/jc.2017-00558.
8
Glucagon increases energy expenditure independently of brown adipose tissue activation in humans.
Diabetes Obes Metab. 2016 Jan;18(1):72-81. doi: 10.1111/dom.12585. Epub 2015 Nov 20.
9
Minireview: Glucagon in stress and energy homeostasis.
Endocrinology. 2012 Mar;153(3):1049-54. doi: 10.1210/en.2011-1979. Epub 2012 Jan 31.
10
Cytoskeletal role in protection of the failing heart by β-adrenergic blockade.
Am J Physiol Heart Circ Physiol. 2012 Feb 1;302(3):H675-87. doi: 10.1152/ajpheart.00867.2011. Epub 2011 Nov 11.

本文引用的文献

1
Alpha-cells of the endocrine pancreas: 35 years of research but the enigma remains.
Endocr Rev. 2007 Feb;28(1):84-116. doi: 10.1210/er.2006-0007. Epub 2007 Jan 16.
5
p38 Mitogen-activated protein kinase plays a stimulatory role in hepatic gluconeogenesis.
J Biol Chem. 2005 Dec 30;280(52):42731-7. doi: 10.1074/jbc.M506223200. Epub 2005 Nov 3.
6
Maintenance of the postabsorptive plasma glucose concentration: insulin or insulin plus glucagon?
Am J Physiol Endocrinol Metab. 2005 Aug;289(2):E181-6. doi: 10.1152/ajpendo.00460.2004.
7
Convergent signal transduction pathways controlling cardiomyocyte survival and function: the role of PI 3-kinase and Akt.
J Mol Cell Cardiol. 2005 Jan;38(1):63-71. doi: 10.1016/j.yjmcc.2004.11.005. Epub 2004 Dec 13.
8
Quantitation of the large polypeptide glucagon by protein precipitation and LC/MS.
Biomed Chromatogr. 2004 Nov;18(9):700-5. doi: 10.1002/bmc.380.
9
The role of phosphoinositide-3 kinase and PTEN in cardiovascular physiology and disease.
J Mol Cell Cardiol. 2004 Aug;37(2):449-71. doi: 10.1016/j.yjmcc.2004.05.015.
10
Alanine infusion during hypoglycaemia partly supports cognitive performance in healthy human subjects.
Diabet Med. 2004 May;21(5):440-6. doi: 10.1111/j.1464-5491.2004.01174.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验