National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.
Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.
Diabetologia. 2023 Jun;66(6):1142-1155. doi: 10.1007/s00125-023-05889-5. Epub 2023 Mar 14.
AIMS/HYPOTHESIS: Glucagon-stimulated hepatic gluconeogenesis contributes to endogenous glucose production during fasting. Recent studies suggest that TGF-β is able to promote hepatic gluconeogenesis in mice. However, the physiological relevance of serum TGF-β levels to human glucose metabolism and the mechanism by which TGF-β enhances gluconeogenesis remain largely unknown. As enhanced gluconeogenesis is a signature feature of type 2 diabetes, elucidating the molecular mechanisms underlying TGF-β-promoted hepatic gluconeogenesis would allow us to better understand the process of normal glucose production and the pathophysiology of this process in type 2 diabetes. This study aimed to investigate the contribution of upregulated TGF-β1 in human type 2 diabetes and the molecular mechanism underlying the action of TGF-β1 in glucose metabolism.
Serum levels of TGF-β1 were measured by ELISA in 74 control participants with normal glucose tolerance and 75 participants with type 2 diabetes. Human liver tissue was collected from participants without obesity and with or without type 2 diabetes for the measurement of TGF-β1 and glucagon signalling. To investigate the role of Smad3, a key signalling molecule downstream of the TGF-β1 receptor, in mediating the effect of TGF-β1 on glucagon signalling, we generated Smad3 knockout mice. Glucose levels in Smad3 knockout mice were measured during prolonged fasting and a glucagon tolerance test. Mouse primary hepatocytes were isolated from Smad3 knockout and wild-type (WT) mice to investigate the underlying molecular mechanisms. Smad3 phosphorylation was detected by western blotting, levels of cAMP were detected by ELISA and levels of protein kinase A (PKA)/cAMP response element-binding protein (CREB) phosphorylation were detected by western blotting. The dissociation of PKA subunits was measured by immunoprecipitation.
We observed higher levels of serum TGF-β1 in participants without obesity and with type 2 diabetes than in healthy control participants, which was positively correlated with HbA and fasting blood glucose levels. In addition, hyperactivation of the CREB and Smad3 signalling pathways was observed in the liver of participants with type 2 diabetes. Treating WT mouse primary hepatocytes with TGF-β1 greatly potentiated glucagon-stimulated PKA/CREB phosphorylation and hepatic gluconeogenesis. Mechanistically, TGF-β1 treatment induced the binding of Smad3 to the regulatory subunit of PKA (PKA-R), which prevented the association of PKA-R with the catalytic subunit of PKA (PKA-C) and led to the potentiation of glucagon-stimulated PKA signalling and gluconeogenesis.
CONCLUSIONS/INTERPRETATION: The hepatic TGF-β1/Smad3 pathway sensitises the effect of glucagon/PKA signalling on gluconeogenesis and synergistically promotes hepatic glucose production. Reducing serum levels of TGF-β1 and/or preventing hyperactivation of TGF-β1 signalling could be a novel approach for alleviating hyperglycaemia in type 2 diabetes.
目的/假设:胰高血糖素刺激的肝糖异生有助于禁食期间内源性葡萄糖的产生。最近的研究表明,TGF-β 能够促进小鼠的肝糖异生。然而,血清 TGF-β 水平与人类葡萄糖代谢的生理相关性以及 TGF-β 增强糖异生的机制在很大程度上仍不清楚。由于增强的糖异生是 2 型糖尿病的一个显著特征,阐明 TGF-β 促进肝糖异生的分子机制将使我们能够更好地理解正常葡萄糖产生的过程以及 2 型糖尿病中这一过程的病理生理学。本研究旨在探讨上调的 TGF-β1 在人类 2 型糖尿病中的作用以及 TGF-β1 在葡萄糖代谢中的作用机制。
通过 ELISA 测量 74 名糖耐量正常的对照参与者和 75 名 2 型糖尿病患者的血清 TGF-β1 水平。从无肥胖且无 2 型糖尿病或有 2 型糖尿病的参与者中采集人肝组织,以测量 TGF-β1 和胰高血糖素信号。为了研究 TGF-β1 受体下游的关键信号分子 Smad3 在介导 TGF-β1 对胰高血糖素信号的作用中的作用,我们生成了 Smad3 敲除小鼠。在长时间禁食和胰高血糖素耐量试验期间测量 Smad3 敲除小鼠的血糖水平。从小鼠原代肝细胞中分离出 Smad3 敲除和野生型(WT)小鼠,以研究潜在的分子机制。通过 Western 印迹检测 Smad3 磷酸化,通过 ELISA 检测 cAMP 水平,通过 Western 印迹检测蛋白激酶 A(PKA)/cAMP 反应元件结合蛋白(CREB)磷酸化水平。通过免疫沉淀测量 PKA 亚基的解离。
我们观察到无肥胖且有 2 型糖尿病的参与者的血清 TGF-β1 水平高于健康对照参与者,且与 HbA 和空腹血糖水平呈正相关。此外,在 2 型糖尿病患者的肝脏中观察到 CREB 和 Smad3 信号通路的过度激活。用 TGF-β1 处理 WT 小鼠原代肝细胞可大大增强胰高血糖素刺激的 PKA/CREB 磷酸化和肝糖异生。在机制上,TGF-β1 处理诱导 Smad3 与 PKA 的调节亚基(PKA-R)结合,从而阻止 PKA-R 与 PKA 的催化亚基(PKA-C)结合,并导致胰高血糖素刺激的 PKA 信号和糖异生的增强。
结论/解释:肝 TGF-β1/Smad3 途径使胰高血糖素/PKA 信号对糖异生的作用敏感,并协同促进肝葡萄糖产生。降低血清 TGF-β1 水平和/或防止 TGF-β1 信号的过度激活可能是缓解 2 型糖尿病高血糖的一种新方法。