Rahne Torsten, von Specht Hellmut, Mühler Roland
Department of Otolaryngology, Martin-Luther-University, Halle-Wittenberg, Germany.
J Neurosci Methods. 2008 Jul 15;172(1):74-8. doi: 10.1016/j.jneumeth.2008.04.006. Epub 2008 Apr 14.
To isolate event-related potentials (ERPs) from the biological background noise, averaging of stimulus-locked electroencephalogram (EEG) epochs is needed. Recordings with patients often reveal a noisy background EEG, i.e., a high amplitude and multiple artifacts. Research studies have to deal with a limited number of available epochs. Therefore, averaging and efficient artifact rejection algorithms are needed. This paper focuses on the sorted averaging algorithm which was developed for the recording of auditory brainstem responses. We demonstrate the applicability of sorted averaging on ERPs by comparing three different averaging algorithms on a classical mismatch negativity (MMN) paradigm, recorded at 10 normal hearing volunteers. The resulting estimated signal-to-noise ratio (SNR) of the ERP waveforms was significantly increased compared to established averaging algorithms. Thus, the sorted averaging algorithm provides an improvement of the SNR in recordings with poor SNR (e.g., the MMN) or noisy background EEG (e.g., at Cochlear Implant users).
为了从生物背景噪声中分离出事件相关电位(ERP),需要对刺激锁定的脑电图(EEG)片段进行平均。对患者的记录常常显示出嘈杂的背景脑电图,即高幅度和多个伪迹。研究不得不处理有限数量的可用片段。因此,需要平均和有效的伪迹去除算法。本文重点关注为记录听觉脑干反应而开发的排序平均算法。我们通过在10名正常听力志愿者身上记录的经典失配负波(MMN)范式上比较三种不同的平均算法,来证明排序平均在ERP上的适用性。与已有的平均算法相比,ERP波形的最终估计信噪比(SNR)显著提高。因此,排序平均算法在信噪比差的记录(如MMN)或嘈杂的背景脑电图记录(如在人工耳蜗使用者中)中提高了SNR。