Chen Xu, Fu Chenglin, Wang Yi, Yang Wensheng, Evans David G
State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China.
Biosens Bioelectron. 2008 Nov 15;24(3):356-61. doi: 10.1016/j.bios.2008.04.007. Epub 2008 Apr 16.
Positively charged Ni-Al layered double hydroxide nanosheets (Ni-Al LDHNS) have been used for the first time as matrices for immobilization of horseradish peroxidase (HRP) in order to fabricate enzyme electrodes for the purpose of studying direct electron transfer between the redox centers of proteins and underlying electrodes. X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM) revealed that the HRP-Ni-Al LDHNS film had an ordered structure and that HRP was intercalated into Ni-Al LDHNS with a monolayer arrangement. Field emission scanning electron microscopy (FESEM) showed that the HRP-Ni-Al LDHNS film had a uniform, porous morphology. UV-vis spectroscopy indicated that the intercalated HRP retained its native structure after incorporation in the Ni-Al LDHNS film. The immobilized HRP in Ni-Al LDHNS on the surface of a glassy carbon electrode (GCE) exhibited good direct electrochemical and electrocatalytic responses to the reduction of hydrogen peroxide (H(2)O(2)) and trichloroacetic acid (TCA). The resulting H(2)O(2) biosensor showed a wide linear range from 6.00 x 10(-7)M to 1.92 x 10(-4)M, low detection limit (4.00 x 10(-7)M) and good stability. The results show that Ni-Al LDHNS provide a novel and efficient platform for the immobilization of enzymes and realizing direct electrochemistry and that the materials have potential applications in the fabrication of third-generation biosensors.
带正电荷的镍铝层状双氢氧化物纳米片(Ni-Al LDHNS)首次被用作固定辣根过氧化物酶(HRP)的基质,以制备酶电极,用于研究蛋白质氧化还原中心与底层电极之间的直接电子转移。X射线衍射(XRD)和高分辨率透射电子显微镜(HRTEM)显示,HRP-Ni-Al LDHNS膜具有有序结构,且HRP以单层排列方式插入到Ni-Al LDHNS中。场发射扫描电子显微镜(FESEM)表明,HRP-Ni-Al LDHNS膜具有均匀的多孔形态。紫外可见光谱表明,插入的HRP在掺入Ni-Al LDHNS膜后保留了其天然结构。固定在玻碳电极(GCE)表面的Ni-Al LDHNS中的HRP对过氧化氢(H₂O₂)和三氯乙酸(TCA)的还原表现出良好的直接电化学和电催化响应。所得的H₂O₂生物传感器显示出从6.00×10⁻⁷M到1.92×10⁻⁴M的宽线性范围、低检测限(4.00×10⁻⁷M)和良好的稳定性。结果表明,Ni-Al LDHNS为酶的固定以及实现直接电化学提供了一个新颖且高效的平台,并且该材料在第三代生物传感器的制备中具有潜在应用。