Suppr超能文献

重新审视酿酒酵母预测的开放阅读框组。

Revisiting the Saccharomyces cerevisiae predicted ORFeome.

作者信息

Li Qian-Ru, Carvunis Anne-Ruxandra, Yu Haiyuan, Han Jing-Dong J, Zhong Quan, Simonis Nicolas, Tam Stanley, Hao Tong, Klitgord Niels J, Dupuy Denis, Mou Danny, Wapinski Ilan, Regev Aviv, Hill David E, Cusick Michael E, Vidal Marc

机构信息

Center for Cancer Systems Biology (CCSB) and Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA.

出版信息

Genome Res. 2008 Aug;18(8):1294-303. doi: 10.1101/gr.076661.108. Epub 2008 May 23.

Abstract

Accurately defining the coding potential of an organism, i.e., all protein-encoding open reading frames (ORFs) or "ORFeome," is a prerequisite to fully understand its biology. ORFeome annotation involves iterative computational predictions from genome sequences combined with experimental verifications. Here we reexamine a set of Saccharomyces cerevisiae "orphan" ORFs recently removed from the original ORFeome annotation due to lack of conservation across evolutionarily related yeast species. We show that many orphan ORFs produce detectable transcripts and/or translated products in various functional genomics and proteomics experiments. By combining a naïve Bayes model that predicts the likelihood of an ORF to encode a functional product with experimental verification of strand-specific transcripts, we argue that orphan ORFs should still remain candidates for functional ORFs. In support of this model, interstrain intraspecies genome sequence variation is lower across orphan ORFs than in intergenic regions, indicating that orphan ORFs endure functional constraints and resist deleterious mutations. We conclude that ORFs should be evaluated based on multiple levels of evidence and not be removed from ORFeome annotation solely based on low sequence conservation in other species. Rather, such ORFs might be important for micro-evolutionary divergence between species.

摘要

准确界定生物体的编码潜能,即所有编码蛋白质的开放阅读框(ORF)或“ORF组”,是全面理解其生物学特性的先决条件。ORF组注释涉及从基因组序列进行迭代计算预测并结合实验验证。在这里,我们重新审视了一组酿酒酵母“孤儿”ORF,这些ORF最近因在进化相关酵母物种中缺乏保守性而从原始ORF组注释中被剔除。我们表明,许多孤儿ORF在各种功能基因组学和蛋白质组学实验中产生可检测的转录本和/或翻译产物。通过结合预测ORF编码功能产物可能性的朴素贝叶斯模型与链特异性转录本的实验验证,我们认为孤儿ORF仍应作为功能性ORF的候选者。为支持该模型,跨孤儿ORF的种内菌株间基因组序列变异低于基因间区域,表明孤儿ORF承受功能限制并抵抗有害突变。我们得出结论,应基于多个证据层面评估ORF,而不应仅基于在其他物种中的低序列保守性就从ORF组注释中剔除。相反,此类ORF可能对物种间的微进化差异很重要。

相似文献

1
Revisiting the Saccharomyces cerevisiae predicted ORFeome.重新审视酿酒酵母预测的开放阅读框组。
Genome Res. 2008 Aug;18(8):1294-303. doi: 10.1101/gr.076661.108. Epub 2008 May 23.

引用本文的文献

1
Discovering the hidden function in fungal genomes.发现真菌基因组中的隐藏功能。
Nat Commun. 2024 Sep 19;15(1):8219. doi: 10.1038/s41467-024-52568-z.
7
Small toxic protein encoded on chromosome VII of Saccharomyces cerevisiae.由酿酒酵母七号染色体编码的小毒性蛋白。
PLoS One. 2015 Mar 17;10(3):e0120678. doi: 10.1371/journal.pone.0120678. eCollection 2015.
9
Proto-genes and de novo gene birth.原基因和从头基因的诞生。
Nature. 2012 Jul 19;487(7407):370-4. doi: 10.1038/nature11184.
10
Searching in microbial genomes for encoded small proteins.在微生物基因组中搜索编码的小蛋白。
Microb Biotechnol. 2011 May;4(3):308-13. doi: 10.1111/j.1751-7915.2011.00261.x.

本文引用的文献

2
Distinguishing protein-coding and noncoding genes in the human genome.区分人类基因组中的蛋白质编码基因和非编码基因。
Proc Natl Acad Sci U S A. 2007 Dec 4;104(49):19428-33. doi: 10.1073/pnas.0709013104. Epub 2007 Nov 26.
5
Why are there still over 1000 uncharacterized yeast genes?为什么仍有1000多个未被鉴定的酵母基因?
Genetics. 2007 May;176(1):7-14. doi: 10.1534/genetics.107.074468. Epub 2007 Apr 15.
6
A large-scale full-length cDNA analysis to explore the budding yeast transcriptome.一项探索芽殖酵母转录组的大规模全长cDNA分析。
Proc Natl Acad Sci U S A. 2006 Nov 21;103(47):17846-51. doi: 10.1073/pnas.0605645103. Epub 2006 Nov 13.
9
A high-resolution map of transcription in the yeast genome.酵母基因组转录的高分辨率图谱。
Proc Natl Acad Sci U S A. 2006 Apr 4;103(14):5320-5. doi: 10.1073/pnas.0601091103. Epub 2006 Mar 28.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验