Suppr超能文献

SAMFA:简化三维定量构效关系的分子描述

SAMFA: simplifying molecular description for 3D-QSAR.

作者信息

Manchester John, Czermiński Ryszard

机构信息

AstraZeneca Pharmaceuticals R&D Boston, Waltham, Massachusetts 02451, USA.

出版信息

J Chem Inf Model. 2008 Jun;48(6):1167-73. doi: 10.1021/ci800009u. Epub 2008 May 27.

Abstract

In this paper we consider the following question: How much can we simplify molecular description without sacrificing too much quality of 3D-QSAR models. We compare the performance of the newly developed Simple Atom Mapping Following Alignment (SAMFA) descriptors with CoMFA using nine different data sets from the literature, by using three regression approaches (PLS, SVM, RandomForest), as implemented in R, and Monte Carlo cross-validation (MCCV) numerical experiments. The results indicate that SAMFA descriptors, despite their simplicity, perform surprisingly well when compared to the much more refined CoMFA descriptors. Moreover, their simplicity makes them readily interpretable and applicable to the difficult problem of inverse QSAR.

摘要

在本文中,我们考虑以下问题:在不牺牲太多3D-QSAR模型质量的前提下,我们能将分子描述简化到何种程度。我们使用文献中的九个不同数据集,通过R语言中实现的三种回归方法(PLS、SVM、随机森林)以及蒙特卡罗交叉验证(MCCV)数值实验,将新开发的对齐后简单原子映射(SAMFA)描述符与比较分子场分析(CoMFA)的性能进行了比较。结果表明,尽管SAMFA描述符很简单,但与更为精细的CoMFA描述符相比,其表现出人意料地好。此外,它们的简单性使其易于解释,并适用于逆定量构效关系这一难题。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验