Pan Shin-Liang, Lien I-Nan, Yen Ming-Fang, Lee Ti-Kai, Chen Tony Hsiu-Hsi
Department of Physical Medicine and Rehabilitation, National Taiwan University College of Medicine and University Hospital, Taipei, Taiwan.
Arch Phys Med Rehabil. 2008 Jun;89(6):1054-60. doi: 10.1016/j.apmr.2007.10.032.
To estimate time to functional recovery and quantify the effects of significant prognostic factors affecting the dynamic change of 3-state functional outcome after stroke.
Modeling of clinical predictions.
Referral center.
One hundred eleven patients with first-time ischemic stroke.
Not applicable.
Serial Barthel Index scores at onset, 2 weeks, and 1, 2, 4, and 6 months poststroke. The severity of disability was classified into 3 functional states: poor functional state (PFS) for Barthel Index scores from 0 to 40, moderate functional state (MFS) for scores from 45 to 80, and good functional state (GFS) for scores greater than 80. A 3-state Markov regression model together with Bayesian acyclic graphic underpinning was used to estimate transition parameters and mean time to functional recovery between states and to predict the probability of functional recovery by using Gibbs sampling technique.
The mean total recovery time was 3.1 months for patients with PFS at baseline and 1.3 months for patients with MFS at baseline. The mean recovery times to different functional states were also estimated. Age predominantly affected the probabilities of MFS to GFS transitions, younger patients had faster transition rates (rate ratio, 4.51; 95% confidence interval [CI], 2.72-7.40); but age had only borderline effects on PFS to MFS transitions. In contrast, infarct size exerted substantial effects on PFS to MFS transitions: small-size infarct correlated with a higher transition rate (rate ratio, 10.17; 95% CI, 5.25-20.13), whereas only a borderline effect on MFS to GFS transitions was found. The baseline functional state significantly affected the MFS to GFS transitions.
By using a multistate model, overall and patient-specific mean time to functional recovery to different functional states can be estimated and the effect of clinical predictors on functional transitions can be precisely quantified to predict patient-specific probability of functional recovery.
评估功能恢复时间,并量化影响卒中后三状态功能结局动态变化的重要预后因素的作用。
临床预测建模。
转诊中心。
111例首次缺血性卒中患者。
不适用。
卒中发作时、2周以及卒中后1、2、4和6个月时的连续巴氏指数评分。残疾严重程度分为3种功能状态:巴氏指数评分0至40分为功能状态差(PFS),评分45至80分为功能状态中等(MFS),评分大于80分为功能状态良好(GFS)。采用三状态马尔可夫回归模型及贝叶斯无环图形基础,估计状态间的转移参数和功能恢复平均时间,并使用吉布斯抽样技术预测功能恢复的概率。
基线时处于PFS的患者平均总恢复时间为3.1个月,基线时处于MFS的患者为1.3个月。还估计了达到不同功能状态的平均恢复时间。年龄主要影响MFS向GFS转变的概率,年轻患者的转变率更快(率比为4.51;95%置信区间[CI]为2.72 - 7.40);但年龄对PFS向MFS转变的影响仅处于临界水平。相比之下,梗死面积对PFS向MFS转变有显著影响:小面积梗死与较高的转变率相关(率比为10.17;95%CI为5.25 - 20.13),而对MFS向GFS转变仅发现临界影响。基线功能状态对MFS向GFS转变有显著影响。
通过使用多状态模型,可以估计总体和患者个体达到不同功能状态的功能恢复平均时间,并能精确量化临床预测因素对功能转变的作用,以预测患者个体功能恢复的概率。