Mohseni Morvarid, Chishti Athar H
Department of Pharmacology, UIC Cancer Center, University of Illinois College of Medicine, Chicago, IL 60612-3725, USA.
Mol Cell Biol. 2008 Aug;28(15):4712-8. doi: 10.1128/MCB.00237-08. Epub 2008 May 27.
RhoA is known to participate in cytoskeletal remodeling events through several signaling pathways, yet the precise mechanism of its activation remains unknown. Here, we provide the first evidence that dematin functions upstream of RhoA and regulates its activation. Primary mouse embryonic fibroblasts were generated from a dematin headpiece domain null (HPKO) mouse, and the visualization of the actin morphology revealed a time-dependent defect in stress fiber formation, membrane protrusions, cell motility, and cell adhesion. Rescue experiments using RNA interference and transfection assays revealed that the observed phenotypes are due to a null effect and not a gain of function in the mutant fibroblasts. In vivo wounding of adult HPKO mouse skin showed a decrease in wound healing (reepithelialization and granulation) compared to the wild-type control. Biochemical analysis of the HPKO fibroblasts revealed a sustained hyperphosphorylation of focal adhesion kinase (FAK) at tyrosine 397 as well as a twofold increase in RhoA activation. Inhibition of both RhoA and FAK signaling using C3 toxin and FRNK (focal adhesion kinase nonrelated kinase), respectively, revealed that dematin acts upstream of RhoA. Together, these results unveil a new function of dematin as a negative regulator of the RhoA activation pathway with physiological implications for normal and pathogenic signaling pathways.
已知RhoA通过多种信号通路参与细胞骨架重塑事件,但其激活的确切机制仍不清楚。在此,我们提供了首个证据,表明肌动蛋白结合蛋白在RhoA上游发挥作用并调节其激活。从小鼠肌动蛋白结合蛋白头部结构域缺失(HPKO)小鼠中获取原代小鼠胚胎成纤维细胞,对肌动蛋白形态的观察显示,应力纤维形成、膜突出、细胞运动和细胞黏附存在时间依赖性缺陷。使用RNA干扰和转染试验进行的拯救实验表明,观察到的表型是由于突变成纤维细胞中的无效效应而非功能获得。与野生型对照相比,成年HPKO小鼠皮肤的体内创伤显示伤口愈合(再上皮化和肉芽形成)减少。对HPKO成纤维细胞的生化分析显示,粘着斑激酶(FAK)在酪氨酸397处持续发生过度磷酸化,同时RhoA激活增加了两倍。分别使用C3毒素和FRNK(粘着斑激酶非相关激酶)抑制RhoA和FAK信号传导,结果表明肌动蛋白结合蛋白在RhoA上游发挥作用。这些结果共同揭示了肌动蛋白结合蛋白作为RhoA激活途径负调节因子的新功能,对正常和致病信号通路具有生理意义。