Department of Physiology and Biophysics, Boston University School of Medicine, Boston, Massachusetts 02118.
Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 2010, Australia.
J Biol Chem. 2013 Mar 22;288(12):8313-8320. doi: 10.1074/jbc.M112.438861. Epub 2013 Jan 25.
Dematin (band 4.9) is an F-actin binding and bundling protein best known for its role within red blood cells, where it both stabilizes as well as attaches the spectrin/actin cytoskeleton to the erythrocytic membrane. Here, we investigate the structural consequences of phosphorylating serine 381, a covalent modification that turns off F-actin bundling activity. In contrast to the canonical doctrine, in which phosphorylation of an intrinsically disordered region/protein confers affinity for another domain/protein, we found the converse to be true of dematin: phosphorylation of the well folded C-terminal villin-type headpiece confers affinity for its intrinsically disordered N-terminal core domain. We employed analytical ultracentrifugation to demonstrate that dematin is monomeric, in contrast to the prevailing view that it is trimeric. Next, using a series of truncation mutants, we verified that dematin has two F-actin binding sites, one in the core domain and the other in the headpiece domain. Although the phosphorylation-mimicking mutant, S381E, was incapable of bundling microfilaments, it retains the ability to bind F-actin. We found that a phosphorylation-mimicking mutant, S381E, eliminated the ability to bundle, but not bind F-actin filaments. Lastly, we show that the S381E point mutant caused the headpiece domain to associate with the core domain, leading us to the mechanism for cAMP-dependent kinase control of dematin's F-actin bundling activity: when unphosphorylated, dematin's two F-actin binding domains move independent of one another permitting them to bind different F-actin filaments. Phosphorylation causes these two domains to associate, forming a compact structure, and sterically eliminating one of these F-actin binding sites.
肌联蛋白(band 4.9)是一种 F-肌动蛋白结合蛋白和束状蛋白,其在红细胞中的作用最为人所知,它既能稳定也能将血影蛋白/肌动蛋白细胞骨架附着到红细胞膜上。在这里,我们研究了磷酸化丝氨酸 381 (Ser381)的结构后果,这是一种使 F-肌动蛋白束状活性失活的共价修饰。与经典学说相反,在经典学说中,无规卷曲区域/蛋白的磷酸化赋予其与另一个结构域/蛋白的亲和力,我们发现肌联蛋白的情况正好相反:折叠良好的尾部 villin 型头部的磷酸化赋予其与无规卷曲的 N 端核心结构域的亲和力。我们采用分析超速离心法证明肌联蛋白是单体,而不是普遍认为的三聚体。接下来,使用一系列截短突变体,我们验证了肌联蛋白具有两个 F-肌动蛋白结合位点,一个在核心结构域,另一个在头部结构域。尽管磷酸化模拟突变体 S381E 不能束状微丝,但它保留了结合 F-肌动蛋白的能力。我们发现,磷酸化模拟突变体 S381E 消除了束状能力,但不影响 F-肌动蛋白丝的结合。最后,我们表明 S381E 点突变使头部结构域与核心结构域结合,这使我们了解 cAMP 依赖性激酶控制肌联蛋白的 F-肌动蛋白束状活性的机制:当未磷酸化时,肌联蛋白的两个 F-肌动蛋白结合结构域独立移动,允许它们结合不同的 F-肌动蛋白丝。磷酸化导致这两个结构域相互结合,形成一个紧凑的结构,并从空间上消除其中一个 F-肌动蛋白结合位点。