Martin Guillaume, Lenormand Thomas
Centre d'Ecologie Fonctionnelle et Evolutive, UMR CNRS 5175, 34295 Montpellier, France.
Genetics. 2008 Jun;179(2):907-16. doi: 10.1534/genetics.108.087122. Epub 2008 May 27.
The distribution of the selection coefficients of beneficial mutations is pivotal to the study of the adaptive process, both at the organismal level (theories of adaptation) and at the gene level (molecular evolution). A now famous result of extreme value theory states that this distribution is an exponential, at least when considering a well-adapted wild type. However, this prediction could be inaccurate under selection for an optimum (because fitness effect distributions have a finite right tail in this case). In this article, we derive the distribution of beneficial mutation effects under a general model of stabilizing selection, with arbitrary selective and mutational covariance between a finite set of traits. We assume a well-adapted wild type, thus taking advantage of the robustness of tail behaviors, as in extreme value theory. We show that, under these general conditions, both beneficial mutation effects and fixed effects (mutations escaping drift loss) are beta distributed. In both cases, the parameters have explicit biological meaning and are empirically measurable; their variation through time can also be predicted. We retrieve the classic exponential distribution as a subcase of the beta when there are a moderate to large number of weakly correlated traits under selection. In this case too, we provide an explicit biological interpretation of the parameters of the distribution. We show by simulations that these conclusions are fairly robust to a lower adaptation of the wild type and discuss the relevance of our findings in the context of adaptation theories and experimental evolution.
有益突变选择系数的分布对于适应性过程的研究至关重要,无论是在生物体水平(适应性理论)还是在基因水平(分子进化)。极值理论的一个著名结果表明,至少在考虑适应良好的野生型时,这种分布是指数分布。然而,在选择最优值的情况下,这一预测可能不准确(因为在这种情况下,适应度效应分布有一个有限的右尾)。在本文中,我们推导了在稳定选择的一般模型下有益突变效应的分布,该模型中一组有限性状之间存在任意的选择和突变协方差。我们假设野生型适应良好,因此像在极值理论中一样利用尾部行为的稳健性。我们表明,在这些一般条件下,有益突变效应和固定效应(逃脱漂变损失的突变)都是贝塔分布。在这两种情况下,参数都具有明确的生物学意义且可通过实验测量;它们随时间的变化也可以预测。当选择下存在中等数量到大量弱相关性状时,我们将经典指数分布作为贝塔分布的一个子情况推导出来。在这种情况下,我们也对分布参数给出了明确的生物学解释。我们通过模拟表明,这些结论对于野生型较低的适应性相当稳健,并在适应性理论和实验进化的背景下讨论了我们研究结果的相关性。