Yao Li-Chin, Phin Sopheap, Cho Jane, Rushlow Christine, Arora Kavita, Warrior Rahul
Department of Developmental and Cell Biology and the Developmental Biology Center, University of California Irvine, Irvine, CA 92612, USA.
Development. 2008 Jun;135(12):2183-92. doi: 10.1242/dev.015826.
Morphogen gradients play fundamental roles in patterning and cell specification during development by eliciting differential transcriptional responses in target cells. In Drosophila, Decapentaplegic (Dpp), the BMP2/4 homolog, downregulates transcription of the nuclear repressor brinker (brk) in a concentration-dependent manner to generate an inverse graded distribution. Both Dpp and Brk are crucial for directing Dpp target gene expression in defined domains and the consequent execution of distinct developmental programs. Thus, determining the mechanism by which the brk promoter interprets the Dpp activity gradient is essential for understanding both Dpp-dependent patterning and how graded signaling activity can generate different responses through transcriptional repression. We have uncovered key features of the brk promoter that suggest it uses a complex enhancer logic not represented in current models. First, we find that the regulatory region contains multiple compact modules that can independently drive brk-like expression patterns. Second, each module contains binding sites for the Schnurri/Mad/Medea (SMM) complex, which mediates Dpp-dependent repression, linked to regions that direct activation. Third, the SMM repression complex acts through a distance-dependent mechanism that probably uses the canonical co-repressor C-terminal Binding Protein (CtBP). Finally, our data suggest that inputs from multiple regulatory modules are integrated to generate the final pattern. This unusual promoter organization may be necessary for brk to respond to the Dpp gradient in a precise and robust fashion.
形态发生素梯度在发育过程中的模式形成和细胞特化中发挥着基本作用,它通过在靶细胞中引发不同的转录反应来实现。在果蝇中,骨形态发生蛋白2/4同源物“五体不全”(Dpp)以浓度依赖的方式下调核阻遏物“边缘”(brk)的转录,从而产生反向梯度分布。Dpp和Brk对于在特定结构域中指导Dpp靶基因表达以及随后执行不同的发育程序都至关重要。因此,确定brk启动子解读Dpp活性梯度的机制,对于理解Dpp依赖性模式形成以及梯度信号活性如何通过转录抑制产生不同反应都至关重要。我们发现了brk启动子的关键特征,这表明它使用了当前模型中未体现的复杂增强子逻辑。首先,我们发现调控区域包含多个紧凑模块,这些模块可以独立驱动类似brk的表达模式。其次每个模块都包含Schnurri/Mad/Medea(SMM)复合体的结合位点,该复合体介导Dpp依赖性抑制,并与指导激活的区域相连。第三,SMM抑制复合体通过一种可能使用典型共抑制因子C末端结合蛋白(CtBP)的距离依赖性机制发挥作用。最后,我们的数据表明多个调控模块的输入被整合以产生最终模式。这种不同寻常的启动子组织方式可能是brk精确且稳健地响应Dpp梯度所必需的。