Suppr超能文献

α-帕文蛋白CH2-桩蛋白LD1复合物的结构揭示了一种用于粘着斑组装的新型模块化识别机制。

The structure of alpha-parvin CH2-paxillin LD1 complex reveals a novel modular recognition for focal adhesion assembly.

作者信息

Wang Xiaoxia, Fukuda Koichi, Byeon In-Ja, Velyvis Algirdas, Wu Chuanyue, Gronenborn Angela, Qin Jun

机构信息

Structural Biology Program, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA.

出版信息

J Biol Chem. 2008 Jul 25;283(30):21113-9. doi: 10.1074/jbc.M801270200. Epub 2008 May 28.

Abstract

Alpha-parvin is an essential component of focal adhesions (FAs), which are large multiprotein complexes that link the plasma membrane and actin cytoskeleton. Alpha-parvin contains two calponin homology (CH) domains and its C-terminal CH2 domain binds multiple targets including paxillin LD motifs for regulating the FA network and signaling. Here we describe the solution structure of alpha-parvin CH2 bound to paxillin LD1. We show that although CH2 contains the canonical CH-fold, a previously defined N-terminal linker forms an alpha-helix that packs unexpectedly with the C-terminal helix of CH2, resulting in a novel variant of the CH domain. Importantly, such packing generates a hydrophobic surface that recognizes the Leu-rich face of paxillin-LD1, and the binding pattern differs drastically from the classical paxillin-LD binding to four-helix bundle proteins such as focal adhesion kinase. These results define a novel modular recognition mode and reveal how alpha-parvin associates with paxillin to mediate the FA assembly and signaling.

摘要

α-帕文蛋白是粘着斑(FAs)的重要组成部分,粘着斑是连接质膜和肌动蛋白细胞骨架的大型多蛋白复合物。α-帕文蛋白包含两个钙调蛋白同源(CH)结构域,其C端CH2结构域结合多个靶点,包括桩蛋白的LD基序,以调节粘着斑网络和信号传导。在此,我们描述了与桩蛋白LD1结合的α-帕文蛋白CH2的溶液结构。我们发现,尽管CH2含有典型的CH折叠,但先前定义的N端连接子形成了一个α-螺旋,该螺旋意外地与CH2的C端螺旋堆积在一起,从而产生了一种新型的CH结构域变体。重要的是,这种堆积产生了一个疏水表面,该表面识别桩蛋白-LD1富含亮氨酸的表面,并且其结合模式与经典的桩蛋白-LD与四螺旋束蛋白(如粘着斑激酶)的结合模式截然不同。这些结果定义了一种新型的模块化识别模式,并揭示了α-帕文蛋白如何与桩蛋白结合以介导粘着斑组装和信号传导。

相似文献

1
The structure of alpha-parvin CH2-paxillin LD1 complex reveals a novel modular recognition for focal adhesion assembly.
J Biol Chem. 2008 Jul 25;283(30):21113-9. doi: 10.1074/jbc.M801270200. Epub 2008 May 28.
2
Structural basis for paxillin binding and focal adhesion targeting of β-parvin.
J Biol Chem. 2012 Sep 21;287(39):32566-77. doi: 10.1074/jbc.M112.367342. Epub 2012 Aug 6.
3
Structural analysis of the interactions between paxillin LD motifs and alpha-parvin.
Structure. 2008 Oct 8;16(10):1521-31. doi: 10.1016/j.str.2008.08.007.
8
Integrin-linked kinase (ILK) binding to paxillin LD1 motif regulates ILK localization to focal adhesions.
J Biol Chem. 2001 Jun 29;276(26):23499-505. doi: 10.1074/jbc.M102163200. Epub 2001 Apr 13.

引用本文的文献

1
ATP allosterically stabilizes integrin-linked kinase for efficient force generation.
Proc Natl Acad Sci U S A. 2022 Mar 15;119(11):e2106098119. doi: 10.1073/pnas.2106098119. Epub 2022 Mar 8.
2
Phenotype transitions induced by mechanical stimuli in airway smooth muscle are regulated by differential interactions of parvin isoforms with paxillin and Akt.
Am J Physiol Lung Cell Mol Physiol. 2020 May 1;318(5):L1036-L1055. doi: 10.1152/ajplung.00506.2019. Epub 2020 Mar 4.
3
Chapter 22: Structural and signaling functions of integrins.
Biochim Biophys Acta Biomembr. 2020 May 1;1862(5):183206. doi: 10.1016/j.bbamem.2020.183206. Epub 2020 Jan 25.
4
Non-catalytic signaling by pseudokinase ILK for regulating cell adhesion.
Nat Commun. 2018 Oct 26;9(1):4465. doi: 10.1038/s41467-018-06906-7.
6
Engineering Synthetic Antibody Inhibitors Specific for LD2 or LD4 Motifs of Paxillin.
J Mol Biol. 2015 Jul 31;427(15):2532-2547. doi: 10.1016/j.jmb.2015.06.004. Epub 2015 Jun 16.
7
Mechanosensitivity and compositional dynamics of cell-matrix adhesions.
EMBO Rep. 2013 Jun;14(6):509-19. doi: 10.1038/embor.2013.49. Epub 2013 May 17.
9
NMR structure of integrin α4 cytosolic tail and its interactions with paxillin.
PLoS One. 2013;8(1):e55184. doi: 10.1371/journal.pone.0055184. Epub 2013 Jan 31.

本文引用的文献

2
Functional atlas of the integrin adhesome.
Nat Cell Biol. 2007 Aug;9(8):858-67. doi: 10.1038/ncb0807-858.
3
EB3 regulates microtubule dynamics at the cell cortex and is required for myoblast elongation and fusion.
Curr Biol. 2007 Aug 7;17(15):1318-25. doi: 10.1016/j.cub.2007.06.058. Epub 2007 Jul 19.
4
The Ndc80/HEC1 complex is a contact point for kinetochore-microtubule attachment.
Nat Struct Mol Biol. 2007 Jan;14(1):54-9. doi: 10.1038/nsmb1186. Epub 2006 Dec 31.
5
Focal adhesions: what's new inside.
Dev Biol. 2006 Jun 15;294(2):280-91. doi: 10.1016/j.ydbio.2006.03.029. Epub 2006 Mar 30.
6
ILK, PINCH and parvin: the tIPP of integrin signalling.
Nat Rev Mol Cell Biol. 2006 Jan;7(1):20-31. doi: 10.1038/nrm1789.
7
The parvins.
Cell Mol Life Sci. 2006 Jan;63(1):25-35. doi: 10.1007/s00018-005-5355-1.
8
Actopaxin interacts with TESK1 to regulate cell spreading on fibronectin.
J Biol Chem. 2005 Jun 3;280(22):21680-8. doi: 10.1074/jbc.M500752200. Epub 2005 Apr 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验